ams 02
play

AMS-02 Kazunori Nakayama (University of Tokyo) - PowerPoint PPT Presentation

AMS-02 Kazunori Nakayama (University of Tokyo) 2015/5/16, Current situation Excess in Positron and Electron flux : PAMELA/AMS-02 and Fermi No excess in gamma-rays : Fermi,


  1. 宇宙線観測と暗黒物質 AMS-02 による反陽子 Kazunori Nakayama (University of Tokyo) 2015/5/16, 神戸大学

  2. Current situation • Excess in Positron and Electron flux : PAMELA/AMS-02 and Fermi • No excess in gamma-rays : Fermi, HESS, ... • No excess in neutrinos : SK, IceCube • Strong constraint from CMB and BBN • Excess in Anti-Proton ? : AMS-02

  3. Indirect detection of dark matter DM + DM → e ± , γ , ¯ p, ν , . . . e ± ¯ p γ ν We are here

  4. 日木曜日 年 月 日木曜日 年 月 Positron/electron Excess )) - 0.4 (e � )+ 0.3 + (e 0.2 � ) / ( + (e � Positron fraction 0.1 Muller & Tang 1987 MASS 1989 TS93 HEAT94+95 CAPRICE94 AMS98 HEAT00 0.02 Clem & Evenson 2007 PAMELA 0.01 0.1 1 10 100 Fermi Energy (GeV) PAMELA

  5. Positron by AMS-02

  6. Anti-proton by AMS-02

  7. Astrophysics ? G.Giesen et al, 1504.04276

  8. Astrophysics ? Kohri, Ioka, Fujita, Yamazaki, 1505.01236

  9. Dark Matter !? + - Conventional, W W PAMELA2014 AMS-02 4 10 − background DM+background DM /P P 5 − 10 6 − 10 3 1 2 4 − 10 10 10 10 1 10 Energy[GeV] Jin, Wu, Zhou, 1504.04604

  10. Diffusion Equation ∂ x ) + ∂ x ) = K ( E ) ∇ 2 f i ( E, � ∂ tf i ( E, � ∂ E [ b ( E ) f i ( E, � x )] + Q i ( E, � x ) x )] − f i ( E, � x ) P ji − ∂ � ∂ z [ V c ( z ) f i ( E, � + f j ( E, � x ) , τ i τ j j>i x ) : Distribution function of species i f i ( E, � K 0 (kpc 2 /Myr) Model R (kpc) L (kpc) MIN 20 1 0.0016 MED 20 4 0.0112 MAX 20 15 0.0765 L ) V c (km/s) δ 0.85 13.5 0.70 12 0.46 5 R

  11. Diffusion Equation ∂ x ) + ∂ x ) = K ( E ) ∇ 2 f i ( E, � ∂ tf i ( E, � ∂ E [ b ( E ) f i ( E, � x )] + Q i ( E, � x ) x )] − f i ( E, � x ) P ji − ∂ � ∂ z [ V c ( z ) f i ( E, � + f j ( E, � x ) , τ i τ j j>i x ) : Distribution function of species i f i ( E, � Diffusion due to tangled magnetic field K 0 (kpc 2 /Myr) Model R (kpc) L (kpc) MIN 20 1 0.0016 MED 20 4 0.0112 MAX 20 15 0.0765 L ) V c (km/s) δ 0.85 13.5 0.70 12 0.46 5 R

  12. Diffusion Equation ∂ x ) + ∂ x ) = K ( E ) ∇ 2 f i ( E, � ∂ tf i ( E, � ∂ E [ b ( E ) f i ( E, � x )] + Q i ( E, � x ) x )] − f i ( E, � x ) P ji − ∂ � ∂ z [ V c ( z ) f i ( E, � + f j ( E, � x ) , τ i τ j j>i x ) : Distribution function of species i f i ( E, � Diffusion due to Energy loss due to tangled magnetic field I.C. and synchrotron K 0 (kpc 2 /Myr) Model R (kpc) L (kpc) MIN 20 1 0.0016 MED 20 4 0.0112 MAX 20 15 0.0765 L ) V c (km/s) δ 0.85 13.5 0.70 12 0.46 5 R

  13. Diffusion Equation ∂ x ) + ∂ x ) = K ( E ) ∇ 2 f i ( E, � ∂ tf i ( E, � ∂ E [ b ( E ) f i ( E, � x )] + Q i ( E, � x ) x )] − f i ( E, � x ) P ji − ∂ � ∂ z [ V c ( z ) f i ( E, � + f j ( E, � x ) , τ i τ j j>i x ) : Distribution function of species i f i ( E, � Diffusion due to Energy loss due to Source (Supernova, tangled magnetic field I.C. and synchrotron Dark Matter) K 0 (kpc 2 /Myr) Model R (kpc) L (kpc) MIN 20 1 0.0016 MED 20 4 0.0112 MAX 20 15 0.0765 L ) V c (km/s) δ 0.85 13.5 0.70 12 0.46 5 R

  14. Diffusion Equation ∂ x ) + ∂ x ) = K ( E ) ∇ 2 f i ( E, � ∂ tf i ( E, � ∂ E [ b ( E ) f i ( E, � x )] + Q i ( E, � x ) x )] − f i ( E, � x ) P ji − ∂ � ∂ z [ V c ( z ) f i ( E, � + f j ( E, � x ) , τ i τ j j>i x ) : Distribution function of species i f i ( E, � Diffusion due to Energy loss due to Source (Supernova, tangled magnetic field I.C. and synchrotron Dark Matter) K 0 (kpc 2 /Myr) Model R (kpc) L (kpc) MIN 20 1 0.0016 Convective wind MED 20 4 0.0112 MAX 20 15 0.0765 L ) V c (km/s) δ 0.85 13.5 0.70 12 0.46 5 R

  15. Diffusion Equation ∂ x ) + ∂ x ) = K ( E ) ∇ 2 f i ( E, � ∂ tf i ( E, � ∂ E [ b ( E ) f i ( E, � x )] + Q i ( E, � x ) x )] − f i ( E, � x ) P ji − ∂ � ∂ z [ V c ( z ) f i ( E, � + f j ( E, � x ) , τ i τ j j>i x ) : Distribution function of species i f i ( E, � Diffusion due to Energy loss due to Source (Supernova, tangled magnetic field I.C. and synchrotron Dark Matter) K 0 (kpc 2 /Myr) Model R (kpc) L (kpc) Collision of nucleus MIN 20 1 0.0016 Convective wind MED 20 4 0.0112 of i species MAX 20 15 0.0765 L ) V c (km/s) δ 0.85 13.5 0.70 12 0.46 5 R

  16. Diffusion Equation ∂ x ) + ∂ x ) = K ( E ) ∇ 2 f i ( E, � ∂ tf i ( E, � ∂ E [ b ( E ) f i ( E, � x )] + Q i ( E, � x ) x )] − f i ( E, � x ) P ji − ∂ � ∂ z [ V c ( z ) f i ( E, � + f j ( E, � x ) , τ i τ j j>i x ) : Distribution function of species i f i ( E, � Diffusion due to Energy loss due to Source (Supernova, tangled magnetic field I.C. and synchrotron Dark Matter) K 0 (kpc 2 /Myr) Model R (kpc) L (kpc) Production of i Collision of nucleus MIN 20 1 0.0016 Convective wind MED 20 4 0.0112 from collision of j of i species MAX 20 15 0.0765 L ) V c (km/s) δ 0.85 13.5 0.70 12 0.46 5 R

  17. Diffusion Equation for Positron ∂ x ) + ∂ x ) = K ( E ) ∇ 2 f i ( E, � ∂ tf i ( E, � ∂ E [ b ( E ) f i ( E, � x )] + Q i ( E, � x ) x )] − f i ( E, � x ) P ji − ∂ � ∂ z [ V c ( z ) f i ( E, � + f j ( E, � x ) , τ i τ j j>i x ) : Distribution function of species i f i ( E, � Diffusion due to Energy loss due to Source (Supernova, tangled magnetic field I.C. and synchrotron Dark Matter) K 0 (kpc 2 /Myr) Model R (kpc) L (kpc) Production of i Collision of nucleus MIN 20 1 0.0016 Convective wind MED 20 4 0.0112 from collision of j of i species MAX 20 15 0.0765 L ) V c (km/s) δ 0.85 13.5 0.70 12 0.46 5 R

  18. Diffusion Equation ∂ x ) + ∂ x ) = K ( E ) ∇ 2 f i ( E, � ∂ tf i ( E, � ∂ E [ b ( E ) f i ( E, � x )] + Q i ( E, � x ) x )] − f i ( E, � x ) P ji − ∂ � ∂ z [ V c ( z ) f i ( E, � + f j ( E, � x ) , τ i τ j j>i x ) : Distribution function of species i f i ( E, � Diffusion due to Energy loss due to Source (Supernova, tangled magnetic field I.C. and synchrotron Dark Matter) K 0 (kpc 2 /Myr) Model R (kpc) L (kpc) Production of i Collision of nucleus MIN 20 1 0.0016 Convective wind MED 20 4 0.0112 from collision of j of i species MAX 20 15 0.0765 L ) V c (km/s) δ 0.85 13.5 0.70 12 0.46 5 R

  19. Diffusion Equation for Anti-Proton ∂ x ) + ∂ x ) = K ( E ) ∇ 2 f i ( E, � ∂ tf i ( E, � ∂ E [ b ( E ) f i ( E, � x )] + Q i ( E, � x ) x )] − f i ( E, � x ) P ji − ∂ � ∂ z [ V c ( z ) f i ( E, � + f j ( E, � x ) , τ i τ j j>i x ) : Distribution function of species i f i ( E, � Diffusion due to Energy loss due to Source (Supernova, tangled magnetic field I.C. and synchrotron Dark Matter) K 0 (kpc 2 /Myr) Model R (kpc) L (kpc) Production of i Collision of nucleus MIN 20 1 0.0016 Convective wind MED 20 4 0.0112 from collision of j of i species MAX 20 15 0.0765 L ) V c (km/s) δ 0.85 13.5 0.70 12 0.46 5 R

  20. DM source term r ) dN ¯ p ( T ) Q ( T, � r ) = q ( � dT � ρ DM ( | � � 2 r ) = 1 r | ) q ( � 2 � σ v � for annihilating DM , m DM � ρ DM ( | � � 1 r | ) q ( � r ) = for decaying DM . m DM τ DM r ) dN ¯ p ( T ) : energy spectrum of anti-p from DM decay � dT ) = τ DM : DM annihilation cross section, lifetime 1 � , 2 � σ v � � ρ DM ( | � : DM density profile in the Galaxy r | )

  21. Propagation of charged particle in tangled magnetic field � δ � λ = K ( E ) E ∼ 10 17 cm ∼ 0 . 1pc 1GeV c � δ � 1 � 2 � t E 2 � K ( E ) t ∼ 1kpc r ∼ 10 8 yr 1GeV r Charged particle escapes from diffusion zone after 10^7~10^8 yr. ≡ t esc Electron/positron loses energy before escape due to inverse Compton and synchrotron: � � ( δ − 1) / 2 � 1 GeV EK ( E ) r loss loss = ∼ 1 . 8 kpc b ( E ) E

  22. Primary/Secondary ratio f prim Primary: Produced at Source (Proton, Carbon, ...) Secondary: Produced by primary CR-intersteller f sec medium interaction (Anti-proton, Boron, ...) f sec ∼ t int f prim t esc Prim/Sec ratio determines escape time, but there is a degeneracy on K and L. K 0 [kpc 2 / Myr] K 0 [cm 2 / s] R [kpc] L [kpc] V c [km / s] δ 2 . 31 × 10 28 MAX 20.0 15 0.46 0.0765 5 3 . 38 × 10 27 MED 20.0 4 0.70 0.0112 12 4 . 83 × 10 26 MIN 20.0 1 0.85 0.0016 13.5 Donato et al. (2004) Anti-p of DM origin is Primary, not Secondary, hence anti-p flux of DM origin significantly depend on L.

  23. B/C B/C -1 10 AMS-02 Conventional MIN MED MAX 3 -2 -1 2 10 10 10 10 1 10 Kinetic Energy[GeV/n] Jin, Wu, Zhou, 1504.04604

  24. P /P, Background -4 10 /P P -5 10 PAMELA2014 AMS-02 Conventional MIN MED MAX -6 10 3 -1 2 10 10 10 1 10 Energy[GeV] Jin, Wu, Zhou, 1504.04604

  25. Anti-proton flux from DM : diffusion model dependence

  26. Comparison with AMS-02 data Astro BG Astro BG tted), 10 (das long-dashed), while th 1 d 2 × 10 27 sec, d 6 × 10 − 25 cm 3 / sec, τ DM ) = 2 � σ v � ) = m DM = 1 , 3 , 10 , 30TeV � m DM = 0 . 5 , 1 , 2 , 10TeV Hamaguchi, Moroi, KN, 1504.05937

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend