a survey of tutte whitney polynomials
play

A survey of Tutte-Whitney polynomials Graham Farr Faculty of IT - PowerPoint PPT Presentation

A survey of Tutte-Whitney polynomials Graham Farr Faculty of IT Monash University Graham.Farr@infotech.monash.edu.au July 2007 Counting colourings proper colourings Counting colourings proper colourings Counting colourings proper


  1. ✗ ✔ A. & T., 1943 History Ashkin-Teller ✖ ✕ model ( q = 4) Ising ✬ ✩ ★ ✥ Potts ✕ ✁ 1925 1952 ✁ Stat Mech: Ising Potts ✲ partition model model ✧ ✦ ✫ ❏ ✪ (all q ) ( q = 2) functions ❏ ❏ Fortuin & ❏ Whitney, 1935 Graphs: Birkhoff Tutte ✓ ✏ ✓ ✏ ✓ ✏ Kasteleyn ❏ 1912 Tutte, 1947 1954 Chrom. 1972 ❏ ❏ ❫ ✒ ✑ ✲ ✒ ✑ ✒ ✑ poly ✲ ❛ ❛ P ( G ; q ) R ( G ; x , y ) ✲ T ( G ; x , y ) ❛ ✲ ❛ ✲ ✦ ✦ ✦ ✦ ✣ ✡ ✡ Greene Linear codes: MacWilliams ✓ ✏ ✡ 1974 1963 weight ✡ ✒ ✑ ✡ enumerator A C ( z )

  2. ✗ ✔ A. & T., 1943 Network reliability: History Ashkin-Teller ✖ ✕ model ( q = 4) Ising ✬ ✩ ★ ✥ Potts ✕ ✁ 1925 1952 ✁ Stat Mech: Ising Potts ✲ partition model model ✧ ✦ ✫ ❏ ✪ (all q ) ( q = 2) functions ❏ ❏ Fortuin & ❏ Whitney, 1935 Graphs: Birkhoff Tutte ✓ ✏ ✓ ✏ ✓ ✏ Kasteleyn ❏ 1912 Tutte, 1947 1954 Chrom. 1972 ❏ ❏ ❫ ✒ ✑ ✲ ✒ ✑ ✒ ✑ poly ✲ ❛ ❛ P ( G ; q ) R ( G ; x , y ) ✲ T ( G ; x , y ) ❛ ✲ ❛ ✲ ✦ ✦ ✦ ✦ ✣ ✡ ✡ Greene Linear codes: MacWilliams ✓ ✏ ✡ 1974 1963 weight ✡ ✒ ✑ ✡ enumerator A C ( z )

  3. ✗ ✔ A. & T., 1943 Network reliability: History Ashkin-Teller ✖ ✕ van Slyke & ✓ ✏ model ( q = 4) Frank, 1971 Ising ✬ ✩ ★ ✥ Potts ✕ ✁ ✒ ✑ 1925 1952 Π( G ; p ) ✁ Stat Mech: Ising Potts ✲ partition model model ✧ ✦ ✫ ❏ ✪ (all q ) ( q = 2) functions ❏ ❏ Fortuin & ❏ Whitney, 1935 Graphs: Birkhoff Tutte ✓ ✏ ✓ ✏ ✓ ✏ Kasteleyn ❏ 1912 Tutte, 1947 1954 Chrom. 1972 ❏ ❫ ❏ ✒ ✑ ✲ ✒ ✑ ✒ ✑ poly ✲ ❛ ❛ P ( G ; q ) R ( G ; x , y ) ✲ T ( G ; x , y ) ❛ ❛ ✲ ✲ ✦ ✦ ✦ ✦ ✣ ✡ ✡ Greene Linear codes: MacWilliams ✓ ✏ ✡ 1974 1963 weight ✡ ✒ ✡ ✑ enumerator A C ( z )

  4. ✗ ✔ A. & T., 1943 Network reliability: History Ashkin-Teller ✖ ✕ van Slyke & ✓ ✏ model ( q = 4) Frank, 1971 Ising ✬ ✩ ★ ✥ Potts ✁ ✕ ✒ ✑ 1925 1952 Π( G ; p ) ✁ ❇ Stat Mech: Ising Potts ✲ ❇ partition model model ✧ ✦ ✫ ❏ ✪ ❇ (all q ) ( q = 2) functions ❏ ❇ ❏ ❇ Fortuin & Oxley & ❏ ❇ Whitney, 1935 Graphs: Birkhoff Tutte ✓ ✏ ✓ ✏ ✓ ✏ Kasteleyn Welsh ❏ ❇ 1912 Tutte, 1947 1954 Chrom. 1972 1979 ❏ ❇ ◆ ❇ ❏ ❫ ✒ ✑ ✲ ✒ ✑ ✒ ✑ poly ✲ ❛ ❛ P ( G ; q ) R ( G ; x , y ) ✲ T ( G ; x , y ) ❛ ✲ ❛ ✲ ✦ ✦ ✦ ✦ ✡ ✣ ✡ Greene Linear codes: MacWilliams ✓ ✏ ✡ 1974 1963 weight ✡ ✒ ✑ ✡ enumerator A C ( z )

  5. ✗ ✔ A. & T., 1943 Network reliability: History Ashkin-Teller ✖ ✕ van Slyke & ✓ ✏ model ( q = 4) Frank, 1971 Ising ✬ ✩ ★ ✥ Potts ✕ ✁ ✒ ✑ 1925 1952 Π( G ; p ) ✁ ❇ Stat Mech: Ising Potts ✲ ❇ partition model model ✧ ✦ ✫ ❏ ✪ ❇ (all q ) ( q = 2) functions ❏ ❇ ❏ ❇ Fortuin & Oxley & ❏ ❇ Whitney, 1935 Graphs: Birkhoff Tutte ✓ ✏ ✓ ✏ ✓ ✏ Kasteleyn Welsh ❏ ❇ 1912 Tutte, 1947 1954 Chrom. 1972 1979 ❏ ❇ ❇ ◆ ❏ ❫ ✒ ✑ ✲ ✒ ✑ ✒ ✑ poly ✲ ❛ ❛ P ( G ; q ) R ( G ; x , y ) ✲ T ( G ; x , y ) ❛ ✲ ❛ ✲ ✦ ✦ ✦ ✦ ✡ ✣ ✡ Greene Linear codes: MacWilliams ✓ ✏ ✡ 1974 1963 weight ✡ ✒ ✡ ✑ enumerator A C ( z ) Knots: Jones poly

  6. ✗ ✔ A. & T., 1943 Network reliability: History Ashkin-Teller ✖ ✕ van Slyke & ✓ ✏ model ( q = 4) Frank, 1971 Ising ✬ ✩ ★ ✥ Potts ✕ ✁ ✒ ✑ 1925 1952 Π( G ; p ) ✁ ❇ Stat Mech: Ising Potts ✲ ❇ partition model model ✧ ✦ ✫ ❏ ✪ ❇ (all q ) ( q = 2) functions ❏ ❇ ❏ ❇ Fortuin & Oxley & ❏ ❇ Whitney, 1935 Graphs: Birkhoff Tutte ✓ ✏ ✓ ✏ ✓ ✏ Kasteleyn Welsh ❏ ❇ 1912 Tutte, 1947 1954 Chrom. 1972 1979 ❏ ❇ ❇ ◆ ❏ ❫ ✒ ✑ ✲ ✒ ✑ ✒ ✑ poly ✲ ❛ ❛ P ( G ; q ) R ( G ; x , y ) ✲ T ( G ; x , y ) ❛ ✲ ❛ ✲ ✦ ✦ ✦ ✦ ✣ ✡ ✡ Greene Linear codes: MacWilliams ✓ ✏ ✡ 1974 1963 weight ✡ ✒ ✑ ✡ enumerator A C ( z ) ✓ ✏ Jones 1985 ✒ ✑ Knots: V L ( t ) Jones poly

  7. ✗ ✔ A. & T., 1943 Network reliability: History Ashkin-Teller ✖ ✕ van Slyke & ✓ ✏ model ( q = 4) Frank, 1971 Ising ✬ ✩ ★ ✥ Potts ✕ ✁ ✒ ✑ 1925 1952 Π( G ; p ) ✁ ❇ Stat Mech: Ising Potts ✲ ❇ partition model model ✧ ✦ ✫ ✪ ❏ ❇ (all q ) ( q = 2) functions ❏ ❇ ❏ ❇ Fortuin & Oxley & ❏ ❇ Whitney, 1935 Graphs: Birkhoff Tutte ✓ ✏ ✓ ✏ ✓ ✏ Kasteleyn Welsh ❏ ❇ 1912 Tutte, 1947 1954 Chrom. 1972 1979 ❏ ❇ ❇ ◆ ❏ ❫ ✒ ✑ ✲ ✒ ✑ ✒ ✑ poly ✲ ❛ ❛ P ( G ; q ) R ( G ; x , y ) ✲ T ( G ; x , y ) ❛ ❛ ✲ ✲ ✦ ✦ ✦ ✦ ✣ ✡ ✆ ✡ Thistle- ✆ Greene thwaite Linear codes: MacWilliams ✓ ✏ ✡ ✆ 1974 1987 1963 weight ✡ ✆ ✒ ✑ ✡ ✆ enumerator A C ( z ) ✆ ✓ ✆ ✏ Jones 1985 ✆ ✒ ✑ Knots: V L ( t ) Jones poly

  8. Complexity of computing all of R ( G ; x , y ) ◮ Graphs: #P-hard (Linial, 1986)

  9. Complexity of computing all of R ( G ; x , y ) ◮ Graphs: #P-hard (Linial, 1986) ◮ Bipartite graphs: #P-hard (Linial, 1986)

  10. Complexity of computing all of R ( G ; x , y ) ◮ Graphs: #P-hard (Linial, 1986) ◮ Bipartite graphs: #P-hard (Linial, 1986) ◮ Bipartite planar graphs: #P-hard (Vertigan & Welsh, 1992)

  11. Complexity of computing all of R ( G ; x , y ) ◮ Graphs: #P-hard (Linial, 1986) ◮ Bipartite graphs: #P-hard (Linial, 1986) ◮ Bipartite planar graphs: #P-hard (Vertigan & Welsh, 1992) ◮ Planar graphs, max degree 3: #P-hard (Vertigan, 1990)

  12. Complexity of computing all of R ( G ; x , y ) ◮ Graphs: #P-hard (Linial, 1986) ◮ Bipartite graphs: #P-hard (Linial, 1986) ◮ Bipartite planar graphs: #P-hard (Vertigan & Welsh, 1992) ◮ Planar graphs, max degree 3: #P-hard (Vertigan, 1990) ◮ Bounded tree-width: p-time (Noble, 1998; Andrzejak, 1998)

  13. Complexity of computing all of R ( G ; x , y ) ◮ Graphs: #P-hard (Linial, 1986) ◮ Bipartite graphs: #P-hard (Linial, 1986) ◮ Bipartite planar graphs: #P-hard (Vertigan & Welsh, 1992) ◮ Planar graphs, max degree 3: #P-hard (Vertigan, 1990) ◮ Square grid graphs: Open (in #P 1 ) ◮ Bounded tree-width: p-time (Noble, 1998; Andrzejak, 1998)

  14. Complexity of computing all of R ( G ; x , y ) ◮ Graphs: #P-hard (Linial, 1986) ◮ Bipartite graphs: #P-hard (Linial, 1986) ◮ Bipartite planar graphs: #P-hard (Vertigan & Welsh, 1992) ◮ Planar graphs, max degree 3: #P-hard (Vertigan, 1990) ◮ Square grid subgraphs, max deg 3: #P-hard (GF, 2006) ◮ Square grid graphs: Open (in #P 1 ) ◮ Bounded tree-width: p-time (Noble, 1998; Andrzejak, 1998)

  15. Complexity of evaluating at specific points Theorem (Jaeger, Vertigan and Welsh, 1990) The problem of determining R ( G ; x , y ) , given a graph G, is #P-hard at all points ( x , y ) except those where xy = 1 and ( x , y ) = (0 , 0) , ( − 1 , − 2) , ( − 2 , − 1) , ( − 2 , − 2) .

  16. Generalisations Extensions from graphs to:

  17. Generalisations Extensions from graphs to: ◮ representable matroids (Smith), matroids (Tutte, Crapo), greedoids (Gordon & McMahon), Boolean functions or set systems (GF), hyperplane arrangements (Welsh & Whittle, Ardila), semimatroids (Ardila), signed graphs (Murasugi), rooted graphs (Wu, King & Lu), K -terminal graphs (Traldi), biased graphs (Zaslavsky), matroid perspectives (Las Vergnas), matroid pairs (Welsh & Kayibi), bimatroids (Kung), graphic polymatroids (Borzacchini), general polymatroids (Oxley & Whittle), . . .

  18. Generalisations Extensions from graphs to: ◮ representable matroids (Smith), matroids (Tutte, Crapo), greedoids (Gordon & McMahon), Boolean functions or set systems (GF), hyperplane arrangements (Welsh & Whittle, Ardila), semimatroids (Ardila), signed graphs (Murasugi), rooted graphs (Wu, King & Lu), K -terminal graphs (Traldi), biased graphs (Zaslavsky), matroid perspectives (Las Vergnas), matroid pairs (Welsh & Kayibi), bimatroids (Kung), graphic polymatroids (Borzacchini), general polymatroids (Oxley & Whittle), . . . . . . or extend the polynomials:

  19. Generalisations Extensions from graphs to: ◮ representable matroids (Smith), matroids (Tutte, Crapo), greedoids (Gordon & McMahon), Boolean functions or set systems (GF), hyperplane arrangements (Welsh & Whittle, Ardila), semimatroids (Ardila), signed graphs (Murasugi), rooted graphs (Wu, King & Lu), K -terminal graphs (Traldi), biased graphs (Zaslavsky), matroid perspectives (Las Vergnas), matroid pairs (Welsh & Kayibi), bimatroids (Kung), graphic polymatroids (Borzacchini), general polymatroids (Oxley & Whittle), . . . . . . or extend the polynomials: ◮ multivariate polynomials of various kinds: variables at each vertex (Noble & Welsh), or edge (Fortuin & Kasteleyn, Traldi, Kung, Sokal, Bollob´ as & Riordan, Zaslavsky, Ellis-Monaghan & Riordan, Britz).

  20. Generalisations

  21. Generalisations Common themes:

  22. Generalisations Common themes: ◮ interesting partial evaluations

  23. Generalisations Common themes: ◮ interesting partial evaluations ◮ deletion-contraction relations

  24. Generalisations Common themes: ◮ interesting partial evaluations ◮ deletion-contraction relations ◮ Recipe Theorems

  25. Generalisations Common themes: ◮ interesting partial evaluations ◮ deletion-contraction relations ◮ Recipe Theorems ◮ easier proofs

  26. Generalisations Common themes: ◮ interesting partial evaluations ◮ deletion-contraction relations ◮ Recipe Theorems ◮ easier proofs ◮ roots

  27. Generalisations Common themes: ◮ interesting partial evaluations ◮ deletion-contraction relations ◮ Recipe Theorems ◮ easier proofs ◮ roots ◮ how much of the graph is determined by the polynomial?

  28. Generalisations Common themes: ◮ interesting partial evaluations ◮ deletion-contraction relations ◮ Recipe Theorems ◮ easier proofs ◮ roots ◮ how much of the graph is determined by the polynomial? We now look at a generalisation to Boolean functions . . .

  29. Rank ↔ rowspace Incidence matrix edges   . .   .       vertices · · · 0/1 entries · · ·       .   . .      

  30. Rank ↔ rowspace E (edge set) � �� � Incidence matrix E \ W W � �� � � �� �   . .   .       vertices · · · 0/1 entries · · ·       .   . .      

  31. Rank ↔ rowspace E (edge set) � �� � Incidence matrix E \ W W − → echelon form � �� � � �� �   . .   .       vertices · · · 0/1 entries · · ·       .   . .      

  32. Rank ↔ rowspace E (edge set) � �� � Incidence matrix E \ W W − → echelon form � �� � � �� �   0 I · · · · · · · · ·            .  .   0 0 I .         0

  33. Rank ↔ rowspace E (edge set) � �� � Incidence matrix E \ W W − → echelon form � �� � � �� �   ✻ ✻ ρ ( E \ W ) 0 I · · · · · · · · ·     ❄     ρ ( E )    .  .   0 0 I .     ❄     0

  34. Rank ↔ rowspace E (edge set) � �� � Incidence matrix E \ W W − → echelon form � �� � � �� �   ✻ ✻ ρ ( E \ W ) 0 I · · · · · · · · ·     ❄     ρ ( E )    .  .   0 0 I .     ❄     0 Count rowspace members that are 0 outside W : � 2 ρ ( E ) − ρ ( E \ W ) = ind Rowspace ( X ) X ⊆ W

  35. Count rowspace members that are 0 outside W : � 2 ρ ( E ) − ρ ( E \ W ) = ind Rowspace ( X ) X ⊆ W

  36. Count rowspace members that are 0 outside W : � 2 ρ ( E ) − ρ ( E \ W ) = ind Rowspace ( X ) X ⊆ W � � � X ⊆ E ind( X ) ρ ( W ) = log 2 � X ⊆ E \ W ind( X )

  37. Count rowspace members that are 0 outside W : � 2 ρ ( E ) − ρ ( E \ W ) = ind Rowspace ( X ) X ⊆ W � � � X ⊆ E ind( X ) ρ ( W ) = log 2 � X ⊆ E \ W ind( X ) Generalise to other functions (not necessarily indicator functions of rowspaces) (GF, 1993):

  38. Count rowspace members that are 0 outside W : � 2 ρ ( E ) − ρ ( E \ W ) = ind Rowspace ( X ) X ⊆ W � � � X ⊆ E ind( X ) ρ ( W ) = log 2 � X ⊆ E \ W ind( X ) Generalise to other functions (not necessarily indicator functions of rowspaces) (GF, 1993): For any f : 2 E → { 0 , 1 } . . . or . . . → R . . . : Define Qf by: � � � X ⊆ E f ( X ) ( Qf )( W ) = log 2 � X ⊆ E \ W f ( X )

  39. Count rowspace members that are 0 outside W : � 2 ρ ( E ) − ρ ( E \ W ) = ind Rowspace ( X ) X ⊆ W � � � X ⊆ E ind( X ) ρ ( W ) = log 2 � X ⊆ E \ W ind( X ) Generalise to other functions (not necessarily indicator functions of rowspaces) (GF, 1993): For any f : 2 E → { 0 , 1 } . . . or . . . → R . . . : Define Qf by: � � � X ⊆ E f ( X ) ( Qf )( W ) = log 2 � X ⊆ E \ W f ( X ) Inversion:

  40. Count rowspace members that are 0 outside W : � 2 ρ ( E ) − ρ ( E \ W ) = ind Rowspace ( X ) X ⊆ W � � � X ⊆ E ind( X ) ρ ( W ) = log 2 � X ⊆ E \ W ind( X ) Generalise to other functions (not necessarily indicator functions of rowspaces) (GF, 1993): For any f : 2 E → { 0 , 1 } . . . or . . . → R . . . : Define Qf by: � � � X ⊆ E f ( X ) ( Qf )( W ) = log 2 � X ⊆ E \ W f ( X ) Inversion: if ρ : 2 E → { 0 , 1 } then define Q † ρ by ( Q † ρ )( V ) = ( − 1) | V | � ( − 1) | W | 2 ρ ( E ) − ρ ( E \ W ) W ⊆ V

  41. Properties of the transform Q Basic properties: ◮ ( Q † Qf )( V ) = f ( V ) f ( ∅ ) ◮ ( QQ † ρ )( V ) = ρ ( V ) − ρ ( ∅ )

  42. Properties of the transform Q Basic properties: ◮ ( Q † Qf )( V ) = f ( V ) f ( ∅ ) ◮ ( QQ † ρ )( V ) = ρ ( V ) − ρ ( ∅ ) ◮ Q † QQ † = Q † ◮ QQ † Q = Q

  43. Properties of the transform Q Basic properties: ◮ ( Q † Qf )( V ) = f ( V ) f ( ∅ ) ◮ ( QQ † ρ )( V ) = ρ ( V ) − ρ ( ∅ ) ◮ Q † QQ † = Q † ◮ QQ † Q = Q Relationship with the Hadamard transform: f ( W ) := 1 � ˆ ( − 1) | W ∩ X | f ( X ) 2 n X ⊆ E

  44. Properties of the transform Q Basic properties: ◮ ( Q † Qf )( V ) = f ( V ) f ( ∅ ) ◮ ( QQ † ρ )( V ) = ρ ( V ) − ρ ( ∅ ) ◮ Q † QQ † = Q † ◮ QQ † Q = Q Relationship with the Hadamard transform: f ( W ) := 1 � ˆ ( − 1) | W ∩ X | f ( X ) 2 n X ⊆ E ✲ Q f Qf Hadamard transform ↓ ↓ matroid-style dual Q ✲ ( Qf ) ∗ = Q ˆ ˆ f f

  45. Extending the Whitney rank generating function � x Qf ( E ) − Qf ( X ) y | X |− Qf ( X ) R ( f ; x , y ) = X ⊆ E

  46. Extending the Whitney rank generating function � x Qf ( E ) − Qf ( X ) y | X |− Qf ( X ) R ( f ; x , y ) = X ⊆ E x Qf ( E ) � ( xy ) − Qf ( X ) y | X | R 1 ( f ; x , y ) = X ⊆ E

  47. Extending the Whitney rank generating function � x Qf ( E ) − Qf ( X ) y | X |− Qf ( X ) R ( f ; x , y ) = X ⊆ E x Qf ( E ) � ( xy ) − Qf ( X ) y | X | R 1 ( f ; x , y ) = X ⊆ E Example: X f ∅ 1 E = { 1 , 2 } { 1 } 1 { 2 } 1 { 1 , 2 } 0

  48. Extending the Whitney rank generating function � x Qf ( E ) − Qf ( X ) y | X |− Qf ( X ) R ( f ; x , y ) = X ⊆ E x Qf ( E ) � ( xy ) − Qf ( X ) y | X | R 1 ( f ; x , y ) = X ⊆ E Example: X f ∅ 1 E = { 1 , 2 } { 1 } 1 { 2 } 1 { 1 , 2 } 0 R ( f ; x , y ) = x log 2 3 + 2 xy 2 − log 2 3 + y 2 − log 2 3

  49. Deletion-contraction For e ∈ E , X ⊆ E \ { e } : Deletion Contraction \ e )( X ) = f ( X ) + f ( X ∪ { e } ) / e )( X ) = f ( X ) ( f \ ; ( f / f ( ∅ ) . f ( ∅ ) + f ( { e } )

  50. Deletion-contraction For e ∈ E , X ⊆ E \ { e } : Deletion Contraction \ e )( X ) = f ( X ) + f ( X ∪ { e } ) / e )( X ) = f ( X ) ( f \ ; ( f / f ( ∅ ) . f ( ∅ ) + f ( { e } ) Deletion-contraction rule: ˆ “ ” “ ” 1+ f ( { e } f ( { e } log 2 1+ R ( f ; x , y ) = x log 2 ˆ f ( ∅ ) R ( f \ \ e ; x , y )+ y R ( f / / e ; x , y ) f ( ∅ )

  51. Generalised Tutte-Whitney plane y 2 1 − 2 − 1 1 2 x -1 -2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend