a step up in expressiveness of decidab le fi x point logi
play

A step up in expressiveness of decidab le fi x point logi c s Micha - PowerPoint PPT Presentation

A step up in expressiveness of decidab le fi x point logi c s Micha el B enedikt 1 , P ierre B o u rhis 2 , a nd M i c h a el Va nden B oom 1 1 U ni v ersit y of Ox ford 2 CNRS CRIS t AL , U ni v ersit e L ille 1, INRIA L ille LICS 20 16 N e w Y


  1. A step up in expressiveness of decidab le fi x point logi c s Micha el B enedikt 1 , P ierre B o u rhis 2 , a nd M i c h a el Va nden B oom 1 1 U ni v ersit y of Ox ford 2 CNRS CRIS t AL , U ni v ersit ´ e L ille 1, INRIA L ille LICS 20 16 N e w Y ork, USA 1 / 15

  2. Fixpoint logi c s Fixpoint logi c s ca n e x press d y n a mi c , re cu rsi v e properties. Exa mple b in a r y rel a tion R , u n a r y rel a tion P “from w , it is possi b le to R -re ac h some P -element” [ Reach- P ]( w ) 2 / 15

  3. Fixpoint logi c s Fixpoint logi c s ca n e x press d y n a mi c , re cu rsi v e properties. Exa mple b in a r y rel a tion R , u n a r y rel a tion P “from w , it is possi b le to R -re ac h some P -element” [ lfp Y , y . ∃ z ( Ryz ∧ ( Pz ∨ Yz ))]( w ) 2 / 15

  4. LFP LFP: extension of first-order logic w ith fi x point form u l a s [ lfp Y , y . ψ ( y , Y )]( w ) for ψ ( y , Y ) positi v e in Y (of a rit y m = ∣ y ∣ ). F or a ll str uc t u res A , the form u l a ψ ind uc es a monotone oper a tion P ( A m ) ⟶ P ( A m ) V ⟼ ψ A ( V ) ∶ = { a ∈ A m ∶ A , a , V ⊧ ψ } ⇒ there is a u niq u e le a st fi x point [ lfp Y , y . ψ ( y , Y )] A ∶ = ⋃ α ψ α A ψ 0 A ∶ = ∅ ψ α + 1 ∶ = ψ A ( ψ α A ) A ψ λ A ∶ = ⋃ ψ α A α < λ 3 / 15

  5. LFP LFP: extension of first-order logic with fixpoint formul a s [ lfp Y , y . ψ ( y , Y )]( w ) for ψ ( y , Y ) positive in Y (of a rity m = ∣ y ∣ ). F or a ll stru c tures A , the formul a ψ indu c es a monotone oper a tion P ( A m ) ⟶ P ( A m ) V ⟼ ψ A ( V ) ∶ = { a ∈ A m ∶ A , a , V ⊧ ψ } ⇒ there is a unique le a st fixpoint [ lfp Y , y . ψ ( y , Y )] A ∶ = ⋃ α ψ α A ψ 0 A ∶ = ∅ ψ α + 1 ∶ = ψ A ( ψ α A ) A ψ λ A ∶ = ⋃ ψ α A α < λ S em a nti c s of fi x point oper a tor: A , a ⊧ [ lfp Y , y . ψ ( y , Y )]( w ) iff a ∈ ⋃ α ψ α A 3 / 15

  6. Exa mples “from w , it is possible to R -re ac h some P -element” [ lfp Y , y . ∃ z ( Ryz ∧ ( Pz ∨ Yz ))]( w ) a 1 a 2 a 3 a k a k + 1 4 / 15

  7. Exa mples “from w , it is possible to R -re ac h some P -element” [ lfp Y , y . ∃ z ( Ryz ∧ ( Pz ∨ Yz ))]( w ) a 1 a 2 a 3 a k a k + 1 , i.e. “ ( w , x ) is in the tr a nsitive c losure of R ” “from w , it is possi b le to R -re ac h x ” [ lfp Y , y . ∃ z ( Ryz ∧ ( z = x ∨ Yz ))]( w ) ( F ree first-order v a ri ab le x in the fixpoint predi ca te is ca lled a p a r a meter.) 4 / 15

  8. Some decidab le fr a gments of LFP (fi x point e x tension of FO ) The f a mily of “gu a rded” fixpoint logi c s h a s de c id ab le s a tisfi ab ility. GFP LFP L µ GNFP UNFP G u a rded fixpoint logi c ( GFP ): A ndr ´ ek a , v a n B enthem, N´ emeti ’95-’98; G r¨ a del, Wa l u kie w i c z ’99 U n a r y neg a tion fi x point logi c ( UNFP ): ten Ca te, S ego u fin ’11 G u a rded neg a tion fi x point logi c ( GNFP ): B´ a r ´ a n y , ten Ca te, S ego u fin ’11 5 / 15

  9. Guarded negation fixpoint logi c ( GNFP ) Let σ be a sign a ture of rel a tions a nd c onst a nts. Sy nt ax of GNFP [ σ ] φ ∶∶ = R t ∣ Y t ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃ y ( ψ ( x y )) ∣ G ( x ) ∧ ¬ ψ ( x ) ∣ [ lfp Y , y . G ( y ) ∧ φ ( y , Y , Z )]( t ) where Y only o cc urs positively in φ where R a nd G a re rel a tions in σ or = , a nd t is a tuple over v a ri ab les a nd c onst a nts. 6 / 15

  10. Guarded negation fixpoint logi c ( GNFP ) Let σ be a sign a ture of rel a tions a nd c onst a nts. Sy nt ax of GNFP [ σ ] φ ∶∶ = R t ∣ Y t ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃ y ( ψ ( x y )) ∣ G ( x ) ∧ ¬ ψ ( x ) ∣ [ lfp Y , y . G ( y ) ∧ φ ( y , Y , Z )]( t ) where Y only o cc urs positively in φ where R a nd G a re rel a tions in σ or = , a nd t is a tuple over v a ri ab les a nd c onst a nts. R estri c tions on fixpoint oper a tor: must define a gu a rded rel a tion (tuples in the fixpoint must b e gu a rded b y a n a tom from σ or = ) ca nnot use p a r a meters 6 / 15

  11. Satisfiab ilit y These gu a rded fixpoint logi c s a ll h a ve the tree-like model property (models with tree de c ompositions of b ounded tree-width) ⇒ a men ab le to tree a utom a t a te c hniques 7 / 15

  12. Satisfiab ilit y These gu a rded fixpoint logi c s a ll h a ve the tree-like model property (models with tree de c ompositions of b ounded tree-width) ⇒ a men ab le to tree a utom a t a te c hniques T heorem ( G r¨ a del, Wa lukiewi c z ’99; B´ a r ´ a n y , S ego u fin, ten Ca te ’11; B´ a r ´ a n y , B oj a´ n c zy k ’1 2 ) Sa tisfi ab ilit y a nd finite s a tisfi ab ilit y a re de c id ab le for g u a rded fi x point logi c s ( 2 EXPTIME in gener a l, EXPTIME for fi x ed- w idth form u l a s in GFP ). I de a : R ed u c e to tree a u tom a ton emptiness test. 7 / 15

  13. Exa mples I n GNFP : [ lfp Y , y . ∃ z ( R yz ∧ ( P z ∨ Y z ))]( w ) 8 / 15

  14. Exa mples I n GNFP : [ lfp Y , y . y = y ∧ ∃ z ( R yz ∧ ( P z ∨ Y z ))]( w ) 8 / 15

  15. Exa mples I n GNFP : [ lfp Y , y . y = y ∧ ∃ z ( R yz ∧ ( P z ∨ Y z ))]( w ) N ot in GNFP : [ lfp Y , y . y = y ∧ ∃ z ( R yz ∧ ( z = x ∨ Y z ))]( w ) 8 / 15

  16. Can we go further? GFP LFP L µ GNFP UNFP Re ca ll the restri c tions on the fixpoint oper a tors in GNFP : must define a gu a rded rel a tion ca nnot use p a r a meters W hi c h of these restri c tions a re essenti a l for de c id ab ility? 9 / 15

  17. Can we go further? GFP LFP L µ GNFP UNFP Re ca ll the restri c tions on the fixpoint oper a tors in GNFP : must define a gu a rded rel a tion ca nnot use p a r a meters W hi c h of these restri c tions a re essenti a l for de c id ab ility? Answer: only first one! 9 / 15

  18. GNFP UP GNFP UP : extend GNFP with ungu a rded p a r a meters in fixpoint 1 0 / 15

  19. GNFP UP GNFP UP : extend GNFP with ungu a rded p a r a meters in fixpoint Syntax of GNFP UP [ σ ] φ ∶∶ = R t ∣ Y t ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃ y ( ψ ( x y )) ∣ G ( x ) ∧ ¬ ψ ( x ) ∣ [ lfp Y , y . G ( y ) ∧ φ ( x , y , Y , Z )]( t ) where Y only o cc urs positively in φ where R a nd G a re rel a tions in σ or = , a nd t is a tuple over v a ri ab les a nd c onst a nts. 1 0 / 15

  20. GNFP UP GNFP UP : extend GNFP with ungu a rded p a r a meters in fixpoint Syntax of GNFP UP [ σ ] φ ∶∶ = R t ∣ Y t ∣ φ ∧ φ ∣ φ ∨ φ ∣ ∃ y ( ψ ( x y )) ∣ G ( x ) ∧ ¬ ψ ( x ) ∣ [ lfp Y , y . G ( y ) ∧ φ ( x , y , Y , Z )]( t ) where Y only o cc urs positively in φ where R a nd G a re rel a tions in σ or = , a nd t is a tuple over v a ri ab les a nd c onst a nts. Exa mple GNFP UP ca n express the tr a nsitive c losure of a b in a ry rel a tion R using [ lfp Y , y . ∃ z ( R yz ∧ ( z = x ∨ Y z ))]( w ) 1 0 / 15

  21. Expressivity of GNFP UP GFP LFP L µ GNFP UP GNFP UNFP GNFP UP a lso su b sumes C 2 RPQ s ( c onjun c tive 2-w a y regul a r p a th queries) ∃ x yz ( [ R ∗ S ]( x , y ) ∧ [ S ∣ R ]( y , z ) ∧ P ( z ) ) MQ s a nd GQ s [R udolph, K r¨ otzs c h ’13 ; B o u rhis, K r¨ ot z s c h, R u dolph ’15 ] 11 / 15

  22. Satisfiab ilit y for GNFP UP GNFP UP still h a s tree-like models ⇒ still a men ab le to tree a utom a t a te c hniques U nlike other gu a rded logi c s, s a tisfi ab ility testing for φ ∈ GNFP UP is non-element a ry, with running time 2 2 . . .2 f (∣ φ ∣) where the height of the tower depends only on the p a r a meter depth: the num b er of nested p a r a meter c h a nges in the formul a . 1 2 / 15

  23. Satisfiab ilit y for GNFP UP GNFP UP still h a s tree-like models ⇒ still a men ab le to tree a utom a t a te c hniques U nlike other gu a rded logi c s, s a tisfi ab ility testing for φ ∈ GNFP UP is non-element a ry, with running time 2 2 . . .2 f (∣ φ ∣) where the height of the tower depends only on the p a r a meter depth: the num b er of nested p a r a meter c h a nges in the formul a . T heorem Sa tisfi ab ility is de c id ab le for φ ∈ GNFP UP in ( n + 2 ) - EXPTIME , where n is the p a r a meter depth of φ . 1 2 / 15

  24. Skirting undecidab ilit y It is known th a t s a tisfi ab ility is unde c id ab le for GFP (even without fixpoints) when c ert a in rel a tions a re required to b e tr a nsitive. [G r¨ a del ’99, Ga nzinger et a l. ’99 ] 1 3 / 15

  25. Skirting undecidab ilit y It is known th a t s a tisfi ab ility is unde c id ab le for GFP (even without fixpoints) when c ert a in rel a tions a re required to b e tr a nsitive. [G r¨ a del ’99, Ga nzinger et a l. ’99 ] GNFP UP ca n express the tr a nsitive c losure of a b in a ry rel a tion R using [ lfp Y , y . ∃ z ( R yz ∧ ( z = x ∨ Y z ))]( w ) . B ut it ca nnot enfor c e th a t R is tr a nsitive. 1 3 / 15

  26. FO-definab ilit y T heorem It is decid ab le whether [ lfp Y , y . G ( y ) ∧ ψ ( x , y , Y )]( w ) ∈ GNFP UP ca n b e expressed in FO (when ψ does not use a ny a ddition a l fixpoints). I t is de c id ab le whether a C 2 RPQ ca n b e expressed in FO . I de a : A d a pt a utom a t a for GNFP UP , a nd redu c e to a b oundedness question for c ost a utom a t a ( a utom a t a with c ounters). 14 / 15

  27. Conc l u sion We ca n a llow ungu a rded p a r a meters in gu a rded fixpoint logi c s. C ontri bu tions W e showed th a t: ▶ tree a utom a t a te c hniques ca n b e used to a n a lyze GNFP UP ▶ s a tisfi ab ility is de c id ab le for GNFP UP , a nd the key f ac tor imp ac ting the c omplexity is the p a r a meter depth ▶ some b oundedness a nd FO -defin ab ility pro b lems a re de c id ab le for GNFP UP 15 / 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend