linear logi vs a ne logi linear logi examples a a a b a
play

Linear Logi vs Ane Logi Linear Logi Examples A A; !( A - PDF document

Linear Logi vs Ane Logi Linear Logi Examples A A; !( A B ) ; !( A C ) ` B C A A A; !( A B ) ; !( A C ) 6` B C A A A; !( A B ) ; !( A


  1. Linear Logi vs AÆne Logi Linear Logi Examples A � A; !( A � Æ B ) ; !( A � Æ C ) ` B � C A � A � A; !( A � Æ B ) ; !( A � Æ C ) 6` B � C A � A � A; !( A � Æ B ) ; !( A � Æ C ) ` A � B � C Theorem (Lin oln, Mit hel, S edro v, Shank ar) LL is unde idable. Linear AÆne Logi =Linear Logi + W eak ening (LL W) The w eak ening rules: � ` � � ` � � ; ` � � ` � ; A B All three sequen ts from the ab o v e example are deriv able in LL W. Theorem. LL W is de idable.

  2. P etri Nets Def. A P etri net is a pair ( P ) where ; T is a �nite set of pla es P P P T � ( ! � ! ) is a �nite set of transa tions Def. A marking of a P etri net is a v e tor M 2 P ! Def. A transa tion = ( u; ) is �reable at if t v M 8 p : � P :M u p p Def. A transa tion = ( u; ) �res form to t v M 0 if M 0 = � + M M u v 0 Def. A state is rea hable from if there is M M 0 a sequen e = = su h M M ; M ; : : : ; M M 0 1 n that is obtained from after the �ring M M i +1 i of some transa tion. Theorem (Ma y er 1981, Kosara ju 1982). The rea habilit y problem is de idable.

  3. Horn fragmen t of LL is a tensor pro du t of literals A simple pr o du t (e.g. � � ). p p q A Horn impli ation is an impli ation of the form: A � Æ B , where A and B are simple pro d- u ts. A Horn se quent is a sequen t of the form !� ` W ; Z where and are simple pro du ts and � is a W Z set of Horn impli ations.

  4. En o ding P etri nets in the Horn frag- men t Ea h pla e orresp onds to a literal. V e tors (markings) orresp onds to simple pro d- u ts. T ransa tion orresp onds to Horn impli ations. P etri net R orresp onds to the set of Horn im- pli ations � R 0 Theorem. is rea hable from in a P etri M M 0 net i� the sequen t !� ` is deriv able R M ; M R in LL. 0 Theorem. The sequen t !� ` is deriv- M ; M R 00 0 able in LL W i� there is M � M , su h that 00 M is rea hable from M in a P etri net R .

  5. Normal fragmen t � -Horn is an impli ation of the A impli ation form: � Æ ( B � ), where A , and are A C B C simple pro du ts. A simple disjun tion is a disjun tion of the form: B C , where B and C are simple pro d- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . u ts. is a sequen t of the form A normal se quent !� ` ? � ; W ; where is a simple pro du t, � is a m ultiset W of Horn impli ations, � -Horn impli ations and simple disjun tions, and � is a m ultiset of sim- ple pro du ts.

  6. Example = � bl d � paper � Æ L hal k a k boar pr esentation 1 = ides � pr � paper � Æ L sl oj e tor pr esentation 2 = � L bl a k boar d pr oj e tor 3 paper � sl ides � hal k ; ! L ; ! L ; ! L ` pr esentation 1 2 3 0 = L bl a k boar d pr oj e tor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 � � � ! L ! L ! L ` paper paper sl ides hal k ; ; ; 1 2 3 pr esentation; pr esentation 0 � � � ! L ! L ! L ` paper paper sl ides hal k ; ; ; 1 2 3 ? pr esentation

  7. Let � = ( W !� ` ?�). ; Game A � ~ 1. Initially , all v e tors from � are written on the bla kb oard. 2. W e ma y write new v e tors with natur al o- or dinates b y the follo wing rules: ~ (a) If � Æ 2 � and a v e tor + has X Y a Y b een already written, then w e ma y write ~ + . a X ~ (b) If X � Æ ( Y � Y ) 2 � and v e tors a + Y 1 2 1 ~ and + ha v e b een already written, a Y 2 ~ then w e ma y write a + X . ~ ( ) If Y Y 2 � and v e tors a + Y and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . 2 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ a + Y ha v e b een already written, then 2 2 w e ma y write a + a . 1 2 ~ 3. The aim of the game is to obtain . W Game B � 4. If a v e tor has b een written and � a a then w e ma y write .

  8. Theorem. (Computational in terpretation) 1. The normal sequen t � is deriv able in LL i� it is p ossible to rea h the aim in the game A � 2. The normal sequen t � is deriv able in LL W i� it is p ossible to rea h the aim in the game B � Pro of. It is easy to pro v e it b y indu tion on deriv ation and on the n um b er of steps that w e needed to a hiev e the aim in the games.

  9. Redu tion to the normal fragmen t Theorem. F or an y sequen t � one an e�e tiv ely onstru t a normal sequen t � su h that ` � ( ) ` �; LLW LLW ` � ( ) ` � : LL LL Lemma. Let � ` � b e a sequen t. Let x b e an atom in the sequen t. Let A b e an arbitrary form ula. 0 0 Let � = �[ x := A ℄ and � = �[ x := A ℄. 0 0 Then � ` � is deriv able i� !( x � Æ A ) ; !( A � Æ x ) ; � ` � is deriv able.

  10. The de idabilit y of LL W Theorem. The problem whether w e an rea h the aim in the game is de idable. B � Lemma. An y set of pairwise in omparable v e - n tors from is �nite. ! Def. Let � b e a set of normal sequen ts. Let n A � . W e sa y that A is �- losed when ! 1. If � Æ 2 � then X Y ~ ~ n 8 a 2 + 2 A ) + 2 A : ! a Y a X 2. If � Æ ( Y � ) 2 � then X Y 1 2 ~ ~ ~ n 8 a 2 a + 2 A ; a + 2 A ) a + 2 A : ! Y Y X 1 2 3. If Y Y 2 � then . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~ ~ n 8 a ; a 2 ! a + Y 2 A ; a + Y 2 A ) a + a 2 A : 1 2 1 1 2 2 1 2 W e sa y that A is - losed when w 8 a 2 A 8 � 2 A : a

  11. The set of all rea hable v e tors in the game B � is �- losed and - losed. w Lemma. It is p ossible to rea h the aim in the game if and only if the follo wing holds: B � n F or an y A � ! if A is �- losed and ~ ~ w - losed and � � A , then W 2 A . Lemma. If A is losed under the w eak ening then for some �nite B A = K ; [ z z 2B where = f x j � g . K x z z Lemma. The prop ert y of the set A = [ K z 2B z to b e �- lose is de idable. Corollary . The set of deriv able normal sequen ts is o en umerable.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend