two way cost automata and cost logi c s o v er infinite
play

Two-way cost automata and cost logi c s o v er infinite trees Achim - PowerPoint PPT Presentation

Two-way cost automata and cost logi c s o v er infinite trees Achim Blumens a th 1 , T hom a s C ol c om b et 2 , D enis K uper b erg 3 , Pa wel Pa rys 3 , a nd M i c h a el Va nden B oom 4 1 TU Da rmst a dt, 2 U niversit e Pa ris D iderot, 3 U


  1. Two-way cost automata and cost logi c s o v er infinite trees Achim Blumens a th 1 , T hom a s C ol c om b et 2 , D enis K uper b erg 3 , Pa wel Pa rys 3 , a nd M i c h a el Va nden B oom 4 1 TU Da rmst a dt, 2 U niversit ´ e Pa ris D iderot, 3 U niversity of Wa rs a w, 4 U niversity of O xford CSL - LICS 2014 V ienn a , A ustri a 1 / 14

  2. B oundedness questions F inite power property [Simon ’78, Hashiguchi ’79] given regu l a r l a ng ua ge L of finite w ords, is there n ∈ N s uc h th a t L ∗ = { є } ∪ L 1 ∪ L 2 ∪ ⋯ ∪ L n ? S t a r-height pro b lem [Ha shig uc hi ’88, K irsten ’05 ] given regul a r l a ngu a ge L of finite words a nd n ∈ N , is there a regul a r expression for L with a t most n nestings of K leene st a r? F ixpoint c losure b oundedness [B lumens a th+ O tto+ W eyer ’09 ] given a n MSO formul a φ ( x , X ) positive in X , is there n ∈ N su c h th a t the le a st fixpoint of φ over finite words is a lw a ys re ac hed within n iter a tions? 2 / 14

  3. B oundedness questions The theory of regul a r c ost fun c tions is an extension of the theor y of reg ul a r l a ngu a ges th a t ca n b e used to solve these b oundedness questions in a uniform w a y. 3 / 14

  4. B oundedness questions The theory of regul a r c ost fun c tions is an extension of the theor y of reg ul a r l a ngu a ges th a t ca n b e used to solve these b oundedness questions in a uniform w a y. B oundedness pro b lem I nst a n c e: fun c tion f ∶ D → N ∪ { ∞ } ( D is set of words or trees over some fixed finite a lph ab et A ) Q uestion: I s there n ∈ N su c h th a t for a ll stru c tures s ∈ D , f ( s ) ≤ n ? 3 / 14

  5. C ost fun c tions over finite words [C ol c om b et’09 ] Regul a r C ost F un c tions nondeterministic cost automata cost MSO BS expressions stab ili za tion monoids B oundedness de c id ab le [C ol c om b et’09, B oj a´ n c zyk+ C ol c om b et’06 ] 4 / 14

  6. C ost fun c tions over finite words C ost mon a di c se c ond-order logi c ( CMSO ) a ( x ) ∣ X ∣ ≤ N ����������������������������������� Atomic formu l a s: x ∈ X m u st o ccu r positi v ely ��� ���� ������������������������������� C onstru c tors: ∧ , ∨ , ¬ ∃ x ∃ X first-order mon a di c B oole a n se c ond-order c onne c tives qu a ntifi ca tion qu a ntifi ca tion 5 / 14

  7. C ost fun c tions over finite words C ost mon a di c se c ond-order logi c ( CMSO ) a ( x ) ∣ X ∣ ≤ N ����������������������������������� Atomic formu l a s: x ∈ X m u st o ccu r positi v ely ��� ���� ������������������������������� C onstru c tors: ∧ , ∨ , ¬ ∃ x ∃ X first-order mon a di c B oole a n se c ond-order c onne c tives qu a ntifi ca tion qu a ntifi ca tion S em a nti c s � φ � ∶ A ∗ → N ∪ { ∞ } � φ � ( u ) ∶ = inf { n ∶ u ⊧ φ [ n / N ]} 5 / 14

  8. C ost fun c tions over finite words C ost mon a di c se c ond-order logi c ( CMSO ) a ( x ) ∣ X ∣ ≤ N ����������������������������������� Atomic formu l a s: x ∈ X m u st o ccu r positi v ely ��� ���� ������������������������������� C onstru c tors: ∧ , ∨ , ¬ ∃ x ∃ X mon a di c first-order B oole a n qu a ntifi ca tion se c ond-order c onne c tives qu a ntifi ca tion S em a nti c s � φ � ∶ A ∗ → N ∪ { ∞ } � φ � ( u ) ∶ = inf { n ∶ u ⊧ φ [ n / N ]} E x a mple I f φ is in MSO , then � φ � ( u ) ∶ = { 0 if u ⊧ φ ∞ otherwise 5 / 14

  9. C ost fun c tions over finite words C ost mon a di c se c ond-order logi c ( CMSO ) a ( x ) ∣ X ∣ ≤ N ����������������������������������� Atomic formu l a s: x ∈ X m u st o ccu r positi v ely ��� ���� ������������������������������� C onstru c tors: ∧ , ∨ , ¬ ∃ x ∃ X first-order mon a di c B oole a n qu a ntifi ca tion se c ond-order c onne c tives qu a ntifi ca tion S em a nti c s � φ � ∶ A ∗ → N ∪ { ∞ } � φ � ( u ) ∶ = inf { n ∶ u ⊧ φ [ n / N ]} E x a mple Ma ximum length of a b lo c k of a ’s φ ∶ = ∀ X (( block ( X ) ∧ ∀ x ( x ∈ X → a ( x )) → ∣ X ∣ ≤ N ) 5 / 14

  10. C ost fun c tions over finite words [C ol c om b et’09 ] Regu l a r C ost Fu n c tions nondeterministic cost automata cost MSO BS expressions stab ili za tion monoids B oundedness de c id ab le [C ol c om b et’09, B oj a´ n c zyk+ C ol c om b et’06 ] 6 / 14

  11. C ost fun c tions over finite words [C ol c om b et’09 ] Regu l a r C ost Fu n c tions nondeterministic cost automata cost MSO BS expressions stab ili za tion monoids B oundedness de c id ab le [C ol c om b et’09, B oj a´ n c zyk+ C ol c om b et’06 ] l a ngu a ge univers a lity, in c lusion, a nd emptiness de c id ab le 6 / 14

  12. C ost fun c tions over finite words [C ol c om b et’09 ] Regu l a r C ost Fu n c tions nondeterministic cost automata cost MSO BS expressions stab ili za tion monoids B oundedness de c id ab le [C ol c om b et’09, B oj a´ n c zyk+ C ol c om b et’06 ] l a ngu a ge univers a lity, finite power property, in c lusion, a nd emptiness st a r height pro b lem, de c id ab le fixpoint c losure b oundedness, ... de c id ab le 6 / 14

  13. T heory of regul a r c ost fun c tions The theor y of reg ul a r c ost fun c tions is a ro b ust de c id ab le extension of the theory of regul a r l a ngu a ges over: ✓ finite words [C ol c om b et ’09, B oj a n c zyk+ C ol c om b et ’06 ] ✓ infinite words [K uper b erg+ VB ’12, C ol c om b et unpu b lished ] ✓ finite trees [C ol c om b et+ L ¨ oding ’10 ] 7 / 14

  14. T heor y of reg u l a r c ost f u n c tions The theor y of reg ul a r c ost fun c tions is a ro b ust de c id ab le extension of the theory of regul a r l a ngu a ges over: ✓ finite w ords [C ol c om b et ’09, B oj a n c zyk+ C ol c om b et ’06 ] ✓ infinite w ords [K uper b erg+ VB ’12, C ol c om b et unpu b lished ] ✓ finite trees [C ol c om b et+ L ¨ oding ’10 ] ? infinite trees 7 / 14

  15. M otiv a ting open pro b lem M ostowski index pro b lem I nst a n c e: regu l a r l a ng ua ge L of infinite trees, a nd set { i , i + 1, . . . , j } Q uestion: I s there a nondeterministi c p a rity a utom a ton A using only priorities { i , i + 1, . . . , j } su c h th a t L = L ( A ) ? 8 / 14

  16. M otiv a ting open pro b lem M ostowski index pro b lem I nst a n c e: regu l a r l a ng ua ge L of infinite trees, a nd set { i , i + 1, . . . , j } Q uestion: I s there a nondeterministi c p a rity a utom a ton A using only priorities { i , i + 1, . . . , j } su c h th a t L = L ( A ) ? R edu c ed to de c iding b oundedness for c ert a in c ost fun c tions over infinite trees [C ol c om b et+ L ¨ oding ’08 ] 8 / 14

  17. C ost fun c tions over infinite trees Regu l a r C ost Fu n c tions a ltern a ting c ost-p a rity a utom a t a QW C ost Fu n c tions qu a si-we a k c ost a utom a t a B oundedness de c id ab le [K uper b erg+ VB ’11 ] we a k c ost a utom a t a spe c i a l ca se WCMSO of M ostowski index pro b lem 9 / 14

  18. C ost fun c tions over infinite trees Regu l a r C ost Fu n c tions a ltern a ting c ost-p a rity a utom a t a QW C ost Fu n c tions qu a si-we a k c ost a utom a t a QWCMSO B oundedness de c id ab le [K uper b erg+ VB ’11 ] we a k c ost a utom a t a spe c i a l ca se WCMSO of M ostowski index pro b lem 9 / 14

  19. C ost fun c tions over infinite trees Regu l a r C ost Fu n c tions a ltern a ting 2 - wa y/1-w a y c ost-p a rity a utom a t a QW C ost Fu n c tions 2-w a y/1-w a y qw c ost a utom a t a QWCMSO B oundedness de c id ab le [K uper b erg+ VB ’11 ] we a k c ost a utom a t a spe c i a l ca se WCMSO of M ostowski index pro b lem 9 / 14

  20. C ost p a rit y a u tom a t a on infinite trees A = ⟨ A , Q , q 0 , δ , Ω ⟩ δ describes possib le moves Ω ∶ Q → P for E ve a nd A d a m, for a finite set of a nd a sso c i a ted c ounter ac tions priorities P (in c rement, reset, le a ve un c h a nged) n - acc ept a n c e g a me A × t ▶ P ositions in the g a me a re Q × dom ( t ) . ▶ E ve a nd A d a m sele c t the next position in the pl a y ba sed on δ . ▶ E ve is trying to ensure the pl a y h a s c ounter v a lue a t most n a nd the m a ximum priority o cc urring infinitely often in the pl a y is even. S em a nti c s � A � ( t ) ∶ = inf { n ∶ E ve wins the n - acc ept a n c e g a me A × t } 1 0 / 14

  21. W e a k c ost a utom a t a a nd logi c over infinite trees W e a k c ost a utom a ton a ltern a ting c ost-p a rity a utom a ton su c h th a t 1 2 no c y c le visits b oth even a nd odd priorities 11 / 14

  22. W e a k c ost a utom a t a a nd logi c over infinite trees W e a k c ost a utom a ton a ltern a ting c ost-p a rity a utom a ton su c h th a t 1 2 no c y c le visits b oth even a nd odd priorities W e a k c ost mon a di c se c ond-order logi c ( WCMSO ) S ynt a x like CMSO , b ut interpret se c ond-order qu a ntifi ca tion over finite sets 11 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend