a probabilistic kleene theorem
play

A probabilistic Kleene Theorem Benjamin Monmege LSV, ENS Cachan, - PowerPoint PPT Presentation

A probabilistic Kleene Theorem Benjamin Monmege LSV, ENS Cachan, CNRS, France MOVEP 2012, Marseille Part of works published at ATVA12 with Benedikt Bollig, Paul Gastin and Marc Zeitoun Kleenes Theorem a b b Finite State Automata 2


  1. A probabilistic Kleene Theorem Benjamin Monmege LSV, ENS Cachan, CNRS, France MOVEP 2012, Marseille Part of works published at ATVA’12 with Benedikt Bollig, Paul Gastin and Marc Zeitoun

  2. Kleene’s Theorem a b b Finite State Automata 2 1 3 a a a same expressivity Regular Expressions E ::= a | E+E | E · E | E *

  3. Motivations • Theoretically: relate denotational and computational models • Practically: easier to write specifications using regular expressions vs. easier to check properties (emptiness, inclusion...) with automata • Goal: translate expressions to automata, as efficiently as possible

  4. Kleene’s Theorem a a b b b b Finite State Automata 2 2 1 1 3 3 a a a a a a same expressivity Regular Expressions E ::= a | E+E | E · E | E *

  5. Kleene’s Theorem a, 1 a, 1 2 2 b, 1 b, 1 b, 1 b, 1 d e 1 1 2 2 t 1 1 h g Finite State Automata 2 2 i e 2 2 1 1 3 3 W a, 1 a, 1 a, 1 a, 1 6 6 3 3 a, 1 a, 1 2 2 same expressivity Regular Expressions E ::= a | E+E | E · E | E *

  6. Kleene’s Theorem a, 1 a, 1 b, 1 b, 1 b, 1 b, 1 d e 1 1 t h g Finite State Automata i 2 2 1 1 3 3 e W a, 1 a, 1 a, 1 a, 1 6 6 3 3 a, 1 a, 1 2 2 same expressivity Regular Expressions E ::= a | E+E | E · E | E *

  7. Kleene’s Theorem a, 1 a, 1 b, 1 b, 1 b, 1 b, 1 d e 1 1 t h g Finite State Automata i 2 2 1 1 3 3 e W a, 1 a, 1 a, 1 a, 1 6 6 3 3 a, 1 a, 1 2 2 Σ * → ℝ same expressivity Regular Expressions E ::= a | E+E | E · E | E *

  8. Kleene’s Theorem a, 1 a, 1 b, 1 b, 1 b, 1 b, 1 d e 1 1 t h g Finite State Automata i 2 2 1 1 3 3 e W a, 1 a, 1 a, 1 a, 1 6 6 3 3 a, 1 a, 1 2 2 Σ * → ℝ a a b same expressivity two runs: 1 → 2 → 1 → 3 of weight 1/6x1x1x1=1/6 and 1 → 1 → 1 → 3 of weight 1/2x1/2x1x1=1/4 Regular Expressions E ::= a | E+E | E · E | E *

  9. Kleene’s Theorem a, 1 a, 1 b, 1 b, 1 b, 1 b, 1 d e 1 1 t h g Finite State Automata i 2 2 1 1 3 3 e W a, 1 a, 1 a, 1 a, 1 6 6 3 3 a, 1 a, 1 2 2 Σ * → ℝ a a b same expressivity two runs: 1 → 2 → 1 → 3 of weight 1/6x1x1x1=1/6 and 1 → 1 → 1 → 3 of weight 1/2x1/2x1x1=1/4 hence, a a b recognized with weight 1/6+1/4=5/12 Regular Expressions E ::= a | E+E | E · E | E *

  10. Kleene’s Theorem a, 1 a, 1 b, 1 b, 1 b, 1 b, 1 d e 1 1 t h g Finite State Automata i 2 2 1 1 3 3 e W a, 1 a, 1 a, 1 a, 1 6 6 3 3 a, 1 a, 1 2 2 Σ * → ℝ a a b same expressivity two runs: 1 → 2 → 1 → 3 of weight 1/6x1x1x1=1/6 and 1 → 1 → 1 → 3 of weight 1/2x1/2x1x1=1/4 hence, a a b recognized with weight 1/6+1/4=5/12 d e t h g Regular Expressions i e W r e p o E ::= a | E+E | E · E | E * p | r p E

  11. r e g r e b n Kleene’s Theorem e z t ü h c S a, 1 a, 1 b, 1 b, 1 b, 1 b, 1 d e 1 1 t h g Finite State Automata i 2 2 1 1 3 3 e W a, 1 a, 1 a, 1 a, 1 6 6 3 3 a, 1 a, 1 2 2 Σ * → ℝ a a b same expressivity two runs: 1 → 2 → 1 → 3 of weight 1/6x1x1x1=1/6 and 1 → 1 → 1 → 3 of weight 1/2x1/2x1x1=1/4 hence, a a b recognized with weight 1/6+1/4=5/12 d e t h g Regular Expressions i e W r e p o E ::= a | E+E | E · E | E * p | r p E [1] S. Kleene (1956). Representation of events in nerve nets and finite automata. [2] M.-P . Schützenberger (1961). On the Definition of a Family of Automata. Information and Control. For an overview about Weighted Automata, see, e.g., Handbook of Weighted Automata. Editors: Manfred Droste, Werner Kuich, and Heiko Vogler. EATCS Monographs in Theoretical Computer Science. Springer, 2009.

  12. Probabilistic case? a, 1 b, 1 b, 1 1 2 1 3 a, 1 a, 1 6 3 a, 1 2 A = ( Q, ι , Acc , P ) P : Q × Σ × Q → [0 , 1] X P ( q , a , q 0 ) ≤ 1 for all ( q , a ) ∈ Q × A Acc ( q ) + q 0 2 Q

  13. Probabilistic case? a, 1 c i t s i l i b b, 1 b, 1 a b o r P 1 a e t v a i m t c o a 2 1 3 e t u R A e t i n i a, 1 a, 1 F 6 3 a, 1 2 A = ( Q, ι , Acc , P ) P : Q × Σ × Q → [0 , 1] X P ( q , a , q 0 ) ≤ 1 for all ( q , a ) ∈ Q × A Acc ( q ) + q 0 2 Q

  14. Probabilistic case? a, 1 c i t s i l i b b, 1 b, 1 a b o r P 1 a e t v a i m t c o a 2 1 3 e t u R A e t i n i a, 1 a, 1 F 6 3 a, 1 2 A = ( Q, ι , Acc , P ) Applying Schützenberger’s Theorem P : Q × Σ × Q → [0 , 1] over these special Weighted Automata, X P ( q , a , q 0 ) ≤ 1 for all ( q , a ) ∈ Q × A Acc ( q ) + we obtain regular expressions (proper) q 0 2 Q ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + b )

  15. What kind of expressions? a, 1 b, 1 b, 1 1 2 1 3 a, 1 a, 1 6 3 a, 1 2

  16. What kind of expressions? ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + b ) a, 1 b, 1 b, 1 1 2 1 3 a, 1 a, 1 6 3 a, 1 2

  17. What kind of expressions? ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + b ) a, 1 b, 1 b, 1 1 2 1 3 a, 1 a, 1 6 3 a, 1 2

  18. What kind of expressions? ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + b ) ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( a + b ) a, 1 b, 1 b, 1 1 2 1 3 a, 1 a, 1 6 3 a, 1 2

  19. What kind of expressions? ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + b ) ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( a + b ) a, 1 b, 1 b, 1 1 2 1 3 a, 1 a, 1 6 3 a, 1 2

  20. What kind of expressions? ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + b ) ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( a + b ) ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + 1 2 b ) a, 1 b, 1 b, 1 1 2 1 3 a, 1 a, 1 6 3 a, 1 2

  21. What kind of expressions? ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + b ) ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( a + b ) ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + 1 2 b ) a, 1 b, 1 b, 1 1 2 1 3 a, 1 a, 1 6 3 a, 1 2

  22. What kind of expressions? ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + b ) ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( a + b ) ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + 1 2 b ) Searching for a natural fragment a, 1 of weighted regular expressions b, 1 b, 1 1 representing probabilistic behaviors 2 1 3 a, 1 a, 1 6 3 a, 1 2

  23. Constructing Probabilistic Expressions How to iterate? a, 1 b, 1 1 2 5 a, 1 6 a, 1 1 2 1 3 a, 1 3 b, 1 1 4

  24. Constructing Probabilistic Expressions How to iterate? a, 1 b, 1 1 2 5 a, 1 6 a, 1 1 2 1 3 a, 1 3 b, 1 1 4 6 a ( a + b ) + 1 1 2 a + ( 1 3 a + b )

  25. Constructing Probabilistic Expressions How to iterate? a, 1 b, 1 1 2 5 a, 1 6 a, 1 1 2 1 3 a, 1 3 b, 1 1 4 6 a ( a + b ) + 1 1 2 a + ( 1 3 a + b )

  26. Constructing Probabilistic Expressions How to iterate? a, 1 b, 1 1 � 1 � ∗ 6 a ( a + b ) + 1 2 a + ( 1 3 a + b ) 2 5 a, 1 a, 1 6 1 b, 1 a, 1 a, 1 1 3 2 1 2 b, 1 1 3 a, 1 6 a, 1 a, 1 3 2 b, 1 1 4 6 a ( a + b ) + 1 1 2 a + ( 1 3 a + b )

  27. Constructing Probabilistic Expressions How to iterate? a, 1 b, 1 1 � 1 � ∗ 6 a ( a + b ) + 1 2 a + ( 1 3 a + b ) 2 5 a, 1 a, 1 6 1 b, 1 a, 1 a, 1 1 3 2 1 2 b, 1 1 3 a, 1 6 a, 1 a, 1 3 2 b, 1 1 Not a valid Probabilistic 4 Automaton anymore (acceptance condition 6 a ( a + b ) + 1 1 2 a + ( 1 3 a + b ) not fulfilled)

  28. Constructing Probabilistic Expressions How to iterate? a, 1 b, 1 1 2 5 a, 1 6 a, 1 1 2 1 3 a, 1 3 b, 1 1 4 6 a ( a + b ) + 1 1 2 a + ( 1 3 a + b )

  29. Constructing Probabilistic Expressions How to iterate? a, 1 b, 1 1 2 5 a, 1 6 a, 1 1 2 1 3 a, 1 3 b, 1 1 4 6 a ( a + b ) + 1 1 2 a + ( 1 3 a + b )

  30. Constructing Probabilistic Expressions How to iterate? a, 1 ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + b ) b, 1 1 2 5 a, 1 a, 1 6 b, 1 b, 1 1 a, 1 1 2 1 3 2 1 3 a, 1 a, 1 6 3 a, 1 2 a, 1 3 b, 1 1 4 6 a ( a + b ) + 1 1 2 a + ( 1 3 a + b )

  31. Constructing Probabilistic Expressions How to iterate? a, 1 ( 1 6 a ( a + b ) + 1 2 a ) ∗ ( 1 3 a + b ) b, 1 1 2 5 a, 1 a, 1 6 b, 1 b, 1 1 a, 1 1 2 1 3 2 1 3 a, 1 a, 1 6 3 a, 1 2 a, 1 3 Keep some branch for b, 1 1 4 termination of the Probabilistic Automaton 6 a ( a + b ) + 1 1 2 a + ( 1 3 a + b )

  32. Probabilistic Expressions

  33. Probabilistic Expressions • a ∈ A and p ∈ [0, 1 ] are PREs

  34. Probabilistic Expressions E • a a ∈ A and p ∈ [0, 1 ] are PREs • if (E a ) a ∈ A are PREs, then ∑ a ∈ A a · E a is a PRE F b

  35. Probabilistic Expressions E • a a ∈ A and p ∈ [0, 1 ] are PREs • if (E a ) a ∈ A are PREs, then ∑ a ∈ A a · E a is a PRE F b • E if E and F are PREs, then p · E + ( 1 - p ) · F is a PRE p F 1 − p

  36. Probabilistic Expressions E • a a ∈ A and p ∈ [0, 1 ] are PREs • if (E a ) a ∈ A are PREs, then ∑ a ∈ A a · E a is a PRE F b • E if E and F are PREs, then p · E + ( 1 - p ) · F is a PRE p • if E and F are PREs, then E · F is a PRE F 1 − p

  37. Probabilistic Expressions E • a a ∈ A and p ∈ [0, 1 ] are PREs • if (E a ) a ∈ A are PREs, then ∑ a ∈ A a · E a is a PRE F b • E if E and F are PREs, then p · E + ( 1 - p ) · F is a PRE p • if E and F are PREs, then E · F is a PRE E • F if E+F is a PRE, then E * · F is a PRE 1 − p F

  38. Probabilistic Expressions E • a a ∈ A and p ∈ [0, 1 ] are PREs • if (E a ) a ∈ A are PREs, then ∑ a ∈ A a · E a is a PRE F b • E if E and F are PREs, then p · E + ( 1 - p ) · F is a PRE p • if E and F are PREs, then E · F is a PRE E • F if E+F is a PRE, then E * · F is a PRE 1 − p F ( a · E) * · b · F ( p · E) * · ( 1 - p ) · F

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend