concurrent kleene algebra free model and completeness
play

Concurrent Kleene Algebra: Free Model and Completeness e 1 Paul - PowerPoint PPT Presentation

Concurrent Kleene Algebra: Free Model and Completeness e 1 Paul Brunet 1 Alexandra Silva 1 Fabio Zanasi 1 Tobias Kapp 1 University College London Brouwer Seminar T. Kapp e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free


  1. Concurrent Kleene Algebra: Free Model and Completeness e 1 Paul Brunet 1 Alexandra Silva 1 Fabio Zanasi 1 Tobias Kapp´ 1 University College London Brouwer Seminar T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 1 21

  2. Introduction Kleene Algebra models program flow . abort (0) and skip (1) atomic actions ( a , b , . . . ) ( e + f ) ∗ ≡ KA e ∗ · ( f · e ∗ ) ∗ non-deterministic choice ( + ) sequential composition ( · ) indefinite repetition ( ∗ ) T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 2 21

  3. Introduction Thread 1 Thread 2 a c b d How do we model concurrent composition? T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 3 21

  4. Introduction Thread 1 Thread 2 a c b d � �� � abcd + acbd + ··· ? Interleaving is a stop-gap: concurrency information lacking from traces. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 3 21

  5. Introduction Thread 1 Thread 2 a c b d � �� � ( a · b ) � ( c · d ) Concurrent KA 1 adds parallel composition ( � ) 1 Hoare, M¨ oller, Struth, and Wehrman 2009. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 3 21

  6. Introduction KA is well-studied: Decision procedures [Hopcroft and Karp 1971; Bonchi and Pous 2013] Automata, coalgebra [Kleene 1956; Brzozowski 1964; Silva 2010] Free model, completeness [Salomaa 1966; Conway 1971; Kozen 1994] T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 4 21

  7. Introduction KA is well-studied: Decision procedures [Hopcroft and Karp 1971; Bonchi and Pous 2013] Automata, coalgebra [Kleene 1956; Brzozowski 1964; Silva 2010] Free model, completeness [Salomaa 1966; Conway 1971; Kozen 1994] CKA is a work in progress: Decision procedures [Brunet, Pous, and Struth 2017] Automata [Lodaya and Weil 2000; Jipsen and Moshier 2016] Free model, completeness [Gischer 1988; Laurence and Struth 2014] See also [K . , Brunet, Luttik, Silva, and Zanasi 2017]. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 4 21

  8. Introduction Theorem (Kozen 1994) The axioms for KA are complete for equivalence: e ≡ KA f ⇐ ⇒ � e � KA = � f � KA � − � KA is the regular language interpretation of e. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 5 21

  9. Introduction Theorem (Kozen 1994) The axioms for KA are complete for equivalence: e ≡ KA f ⇐ ⇒ � e � KA = � f � KA � − � KA is the regular language interpretation of e. Question Can we find axioms for CKA that are complete for equivalence? That is, ? e ≡ CKA f ⇐ ⇒ � e � CKA = � f � CKA � − � CKA is a generalized regular language interpretation of e. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 5 21

  10. Caveat auditor Completeness for CKA is also shown in [Laurence and Struth 2017]; c.f. https://arxiv.org/abs/1705.05896 Our method differs, because it. . . . . . is fully syntactic . . . uses fixpoints instead of congruences . . . is explicitly constructive We do owe part of our method to op. cit. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 6 21

  11. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 7 21

  12. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c Pomset language: set of pomsets T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 7 21

  13. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c Pomset language: set of pomsets Composition lifts: U · V = { U · V : U ∈ U , V ∈ V} U � V = { U � V : U ∈ U , V ∈ V} T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 7 21

  14. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c Pomset language: set of pomsets Composition lifts: U · V = { U · V : U ∈ U , V ∈ V} U � V = { U � V : U ∈ U , V ∈ V} Kleene star: U ∗ = � n <ω U n T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 7 21

  15. Preliminaries T is the set generated by the grammar e , f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e � f | e ∗ T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  16. Preliminaries T is the set generated by the grammar e , f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e � f | e ∗ BKA semantics is given by � − � BKA : T → 2 Pom Σ . � e ∗ � BKA = � e � ∗ � 0 � BKA = ∅ � e + f � BKA = � e � BKA ∪ � f � BKA BKA � 1 � BKA = { 1 } � e · f � BKA = � e � BKA · � f � BKA � a � BKA = { a } � e � f � BKA = � e � BKA � � f � BKA T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  17. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  18. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  19. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  20. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  21. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  22. Preliminaries Theorem (Laurence and Struth 2014) The axioms for BKA are complete for equivalence: e ≡ BKA f ⇐ ⇒ � e � BKA = � f � BKA T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 8 21

  23. Preliminaries Pomset subsumption: a c a c ⊑ b d b d T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Concurrent Kleene Algebra: Free Model and Completeness Brouwer Seminar 9 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend