completeness for concurrent kleene algebra
play

Completeness for Concurrent Kleene Algebra e 1 Paul Brunet 1 - PowerPoint PPT Presentation

Completeness for Concurrent Kleene Algebra e 1 Paul Brunet 1 Alexandra Silva 1 Fabio Zanasi 1 Tobias Kapp 1 University College London NII Logic Seminar Introduction Kleene Algebra models program flow . abort (0) and skip (1) atomic actions ( a


  1. Completeness for Concurrent Kleene Algebra e 1 Paul Brunet 1 Alexandra Silva 1 Fabio Zanasi 1 Tobias Kapp´ 1 University College London NII Logic Seminar

  2. Introduction Kleene Algebra models program flow . abort (0) and skip (1) atomic actions ( a , b , . . . ) ( e + f ) ∗ ≡ KA e ∗ · ( f · e ∗ ) ∗ non-deterministic choice ( + ) sequential composition ( · ) indefinite repetition ( ∗ ) T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 2 20

  3. Introduction Kleene Algebra models program flow . abort (0) and skip (1) atomic actions ( a , b , . . . ) Thread 1 Thread 2 non-deterministic choice ( + ) a c b d sequential composition ( · ) indefinite repetition ( ∗ ) T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 2 20

  4. Introduction Kleene Algebra models program flow . abort (0) and skip (1) atomic actions ( a , b , . . . ) Thread 1 Thread 2 non-deterministic choice ( + ) a c b d sequential composition ( · ) � �� � indefinite repetition ( ∗ ) ( a · b ) � ( c · d ) Concurrent KA 1 adds parallel composition ( � ) 1 Hoare, M¨ oller, Struth, and Wehrman 2009 T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 2 20

  5. Introduction KA is well-studied: Decision procedures [Hopcroft and Karp 1971; Bonchi and Pous 2013] Coalgebra, automata [Kleene 1956; Brzozowski 1964; Silva 2010] Axiomatisation of equivalence [Salomaa 1966; Conway 1971; Kozen 1994] T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 3 20

  6. Introduction KA is well-studied: Decision procedures [Hopcroft and Karp 1971; Bonchi and Pous 2013] Coalgebra, automata [Kleene 1956; Brzozowski 1964; Silva 2010] Axiomatisation of equivalence [Salomaa 1966; Conway 1971; Kozen 1994] CKA is a work in progress: Decision procedures [Brunet, Pous, and Struth 2017] Coalgebra, automata [K . , Brunet, Luttik, Silva, and Zanasi 2017] Axiomatisation of equivalence [Gischer 1988; Laurence and Struth 2014] T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 3 20

  7. Introduction Theorem (Kozen 1994) The axioms for KA are complete for equivalence: e ≡ KA f ⇐ ⇒ � e � KA = � f � KA � − � KA is the regular language interpretation of e. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 4 20

  8. Introduction Theorem (Kozen 1994) The axioms for KA are complete for equivalence: e ≡ KA f ⇐ ⇒ � e � KA = � f � KA � − � KA is the regular language interpretation of e. Question Can we find axioms for CKA that are complete for equivalence? That is, ? e ≡ CKA f ⇐ ⇒ � e � CKA = � f � CKA � − � CKA is a generalized regular language interpretation of e. T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 4 20

  9. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 5 20

  10. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c Pomset language: set of pomsets T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 5 20

  11. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c Pomset language: set of pomsets Composition lifts: U · V = { U · V : U ∈ U , V ∈ V} U � V = { U � V : U ∈ U , V ∈ V} T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 5 20

  12. Preliminaries Pomset: “word with parallelism” b a · ( b � c ) · d = a d c Pomset language: set of pomsets Composition lifts: U · V = { U · V : U ∈ U , V ∈ V} U � V = { U � V : U ∈ U , V ∈ V} Kleene star: U ∗ = � n <ω U n T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 5 20

  13. Preliminaries T is the set generated by the grammar e , f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e � f | e ∗ T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 6 20

  14. Preliminaries T is the set generated by the grammar e , f ::= 0 | 1 | a ∈ Σ | e + f | e · f | e � f | e ∗ BKA semantics is given by � − � BKA : T → 2 Pom Σ . � 0 � BKA = ∅ � 1 � BKA = { 1 } � a � BKA = { a } � e + f � BKA = � e � BKA ∪ � f � BKA � e · f � BKA = � e � BKA · � f � BKA � e � f � BKA = � e � BKA � � f � BKA � e ∗ � BKA = � e � ∗ BKA T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 6 20

  15. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 6 20

  16. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 6 20

  17. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 6 20

  18. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 6 20

  19. Preliminaries Axioms for BKA : e + 0 ≡ BKA e e · 1 ≡ BKA e ≡ BKA 1 · e e · 0 ≡ BKA 0 ≡ BKA 0 · e e + e ≡ BKA e e + f ≡ BKA f + e e + ( f + g ) ≡ BKA ( f + g ) + h e · ( f · g ) ≡ BKA ( e · f ) · g e · ( f + g ) ≡ BKA e · f + e · h ( e + f ) · g ≡ BKA e · g + f · g 1 + e · e ∗ ≡ BKA e ∗ ⇒ e ∗ · g ≦ BKA f e · f + g ≦ BKA f = e � f ≡ BKA f � e e � 1 ≡ BKA e e � 0 ≡ BKA 0 e � ( f � g ) ≡ BKA ( e � f ) � g e � ( f + g ) ≡ BKA e � f + e � g T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 6 20

  20. Preliminaries Theorem (Laurence and Struth 2014) The axioms for BKA are complete for equivalence: e ≡ BKA f ⇐ ⇒ � e � BKA = � f � BKA T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 6 20

  21. Preliminaries Pomset subsumption: a c a c ⊑ b d b d T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 7 20

  22. Preliminaries Pomset subsumption: a c a c ⊑ b d b d U ⊑ V : U is “more sequential” than V T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 7 20

  23. Preliminaries Pomset subsumption: a c a c ⊑ b d b d U ⊑ V : U is “more sequential” than V Closure under pomset subsumption: U ↓ = { U ′ ⊑ U : U ∈ U} U ↓ : all “sequentialisations” of pomsets in U . T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 7 20

  24. Preliminaries CKA semantics: � e � CKA = � e � BKA ↓ . T. Kapp´ e, P . Brunet, A. Silva, F. Zanasi Completeness for Concurrent Kleene Algebra NII Logic Seminar 8 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend