a probabillistic numerical method for fully nonlinear pdes
play

A probabillistic Numerical Method for Fully Nonlinear PDEs Nizar - PowerPoint PPT Presentation

Motivation : American options The Probabilistic Scheme Numerical results A probabillistic Numerical Method for Fully Nonlinear PDEs Nizar TOUZI Ecole Polytechnique Paris Joint work with Xavier WARIN and Arash FAHIM Computational Methos in


  1. Motivation : American options The Probabilistic Scheme Numerical results A probabillistic Numerical Method for Fully Nonlinear PDEs Nizar TOUZI Ecole Polytechnique Paris Joint work with Xavier WARIN and Arash FAHIM Computational Methos in Finance Fields Institute, Toronto March 22-24, 2010 Nizar TOUZI Nonlinear Monte Carlo

  2. Motivation : American options The Probabilistic Scheme Numerical results Outline 1 Motivation : American options 2 The Probabilistic Scheme A natural MC-FD scheme The semilinear case The fully nonlinear case 3 Numerical results On the choice of µ and σ Portfolio optimization, 2 state variables Portfolio optimization, 5 state variables Nizar TOUZI Nonlinear Monte Carlo

  3. Motivation : American options The Probabilistic Scheme Numerical results Pricing and Hedging US Options • (Ω , F , P ) , P : risk-neutral measure, complete market • Consider an American option defined by the payoff process { G t , t ≥ 0 } • Then, pricing and hedging reduce to : V 0 = sup { E [ G τ ] : τ stopping time ≤ T } which can be approximated by the (discrete-time) Snell envelop( t k := kT / n ) : � � �� V n V n V n T := G T and t k := max G t k , E t k + 1 |F t k Standard numerical scheme ! Nizar TOUZI Nonlinear Monte Carlo

  4. Motivation : American options The Probabilistic Scheme Numerical results Approximation of conditional expectations Main observation : the latter conditional expectations are regressions : � � � � Y n Y n t i + 1 |F t i = t i + 1 | X t i E E = ⇒ Classical methods from statistics : • Kernel regression <Carrière> • Projection on subspaces of L 2 ( P ) <Longstaff-Schwarz, Gobet-Lemor-Warin AAP05> from numerical probabilistic methods • quantization... <Bally-Pagès SPA03> Stochastic mesh <Broadie-Glasserman> Integration by parts <Lions-Reigner 00, Bouchard-T. SPA04> Nizar TOUZI Nonlinear Monte Carlo

  5. Motivation : American options The Probabilistic Scheme Numerical results Objective : from US option to nonlinear PDEs • Suggest a Monte Carlo type of scheme for nonlinear PDEs • Numerical complexity reduces to the same problem as US options... • Nonlinear PDEs appear in many problems in finance Continuous-time portfolio optimization Algorithmic trading under market impact Hedging in illiquid markets ... Nizar TOUZI Nonlinear Monte Carlo

  6. Motivation : American options A natural MC-FD scheme The Probabilistic Scheme The semilinear case Numerical results The fully nonlinear case Outline 1 Motivation : American options 2 The Probabilistic Scheme A natural MC-FD scheme The semilinear case The fully nonlinear case 3 Numerical results On the choice of µ and σ Portfolio optimization, 2 state variables Portfolio optimization, 5 state variables Nizar TOUZI Nonlinear Monte Carlo

  7. Motivation : American options A natural MC-FD scheme The Probabilistic Scheme The semilinear case Numerical results The fully nonlinear case The Monte Carlo component • Consider the fully nonlinear PDE : D v := ( v , Dv , D 2 v ) 0 = − v t ( t , x ) − F ( t , x , D v ( t , x )) , • Isolate a diffusion part in the equation : − v t ( t , x ) − 1 0 = 21 ∆ v ( t , x ) − f ( t , x , D v ( t , x )) • Let X s = x + 1 W s − t + h , s ≥ t − h , evaluate at ( s , X s ) , and take expectations : �� t � � t − ( v t + 1 0 = E 2 ∆ v )( s , X s ) ds − f ( ., D v ) ( s , X s ) ds t − h t − h � � � t = v ( t − h , x ) − E v ( t , X t ) + f ( ., D v ) ( s , X s ) ds t − h Nizar TOUZI Nonlinear Monte Carlo

  8. Motivation : American options A natural MC-FD scheme The Probabilistic Scheme The semilinear case Numerical results The fully nonlinear case The Finite-Differences component • From the previous slide : ˆ v ( t − h , x ) = E [ˆ v ( t , X t )] + h f ( ., E [ D ˆ v ( t , X t )]) v and D 2 ˆ • Need to avoid the calculation of D ˆ v at each time step = ⇒ Integration by parts � � � � v ( t , X t ) W 2 h − h v ( t , X t ) W h , E [ D 2 ˆ E [ D ˆ v ( t , X t )] = E v ( t , X t )] = E h 2 h yields the numerical scheme : ˆ v ( t − h , x ) � �� � � � v ( t , X t ) W 2 h − h v ( t , X t ) W h = E [ˆ v ( t , X t )] + h f x , E [ˆ v ( t , X t )] , E ˆ , E ˆ h h 2 Nizar TOUZI Nonlinear Monte Carlo

  9. Motivation : American options A natural MC-FD scheme The Probabilistic Scheme The semilinear case Numerical results The fully nonlinear case The Finite-Differences component • From the previous slide : ˆ v ( t − h , x ) = E [ˆ v ( t , X t )] + h f ( ., E [ D ˆ v ( t , X t )]) v and D 2 ˆ • Need to avoid the calculation of D ˆ v at each time step = ⇒ Integration by parts � � � � v ( t , X t ) W 2 h − h v ( t , X t ) W h , E [ D 2 ˆ E [ D ˆ v ( t , X t )] = E v ( t , X t )] = E h 2 h yields the numerical scheme : ˆ v ( t − h , x ) � �� � � � v ( t , X t ) W 2 h − h v ( t , X t ) W h = E [ˆ v ( t , X t )] + h f x , E [ˆ v ( t , X t )] , E ˆ , E ˆ h h 2 Nizar TOUZI Nonlinear Monte Carlo

  10. Motivation : American options A natural MC-FD scheme The Probabilistic Scheme The semilinear case Numerical results The fully nonlinear case Intuition From Greeks Calculation • Using the approximation f ′ ( x ) ∼ h = 0 E [ f ′ ( x + W h )] : � f ′ ( x + y ) e − y 2 / ( 2 h ) f ′ ( x ) ∼ √ dy 2 π � e − y 2 / ( 2 h ) f ( x + y ) y √ = dy h 2 π � � f ( x + W h ) W h = E h • Similarly, by an additional integration by parts : � f ( x + y ) y 2 − h e − y 2 / ( 2 h ) f ′′ ( x ) = √ dy h 2 2 π � � W 2 �� h − h = f ( x + W h ) E h 2 Nizar TOUZI Nonlinear Monte Carlo

  11. Motivation : American options A natural MC-FD scheme The Probabilistic Scheme The semilinear case Numerical results The fully nonlinear case A probabilistic numerical scheme for fully nonlinear PDEs This suggests the following discretization : � � Y n X n = g , t n t n � � � � Y n E n Y n X n t i − 1 , Y n t i − 1 , Z n t i − 1 , Γ n = + f ∆ t i , 1 ≤ i ≤ n , t i − 1 i − 1 t i t i − 1 � � ∆ W t i Z n E n Y n = t i − 1 i − 1 t i ∆ t i � � | ∆ W t i | 2 − ∆ t i Γ n E n Y n = t i − 1 i − 1 t i | ∆ t i | 2 Nizar TOUZI Nonlinear Monte Carlo

  12. Motivation : American options A natural MC-FD scheme The Probabilistic Scheme The semilinear case Numerical results The fully nonlinear case Connection with Finite Differences : X h := x + W h • Consider the binomial approximation of the Brownian motion � 1 � ′′ √ 2 δ { 1 } + 1 “ W h ∼ h 2 δ {− 1 } Then : √ √ � � � � ψ ( X h ) W h ∼ ψ ( x + h ) − ψ ( x − h ) ψ ′ ( X h ) √ = E E h 2 h • With the trinomial approximation of the Brownian motion � 1 � ′′ √ 6 δ { 1 } + 2 3 δ { 0 } + 1 “ W h ∼ 3 h 6 δ {− 1 } Then : √ √ � � ψ ( X h ) W 2 � � h − h ∼ ψ ( x + 3 h ) − 2 ψ ( x ) + ψ ( x − 3 h ) ψ ′′ ( X h ) = E E h 2 3 h Nizar TOUZI Nonlinear Monte Carlo

  13. Motivation : American options A natural MC-FD scheme The Probabilistic Scheme The semilinear case Numerical results The fully nonlinear case Description of the scheme 1. Simulate trajectories of the forward process X (well understood) 2. Backward algorithm : � � � ˆ � Y n X n = g � t n t n � � � � � ˆ ˆ t i − 1 , ˆ t i − 1 , ˆ Y n E n � Y n X n Y n Z n � = + f ∆ t i , 1 ≤ i ≤ n , t i − 1 t i − 1 t i t i − 1 � � � � ∆ W t i � ˆ ˆ Z n E n � Y n = � t i − 1 t i − 1 t i ∆ t i Question : what kind of objet are we simulating ? Nizar TOUZI Nonlinear Monte Carlo

  14. Motivation : American options A natural MC-FD scheme The Probabilistic Scheme The semilinear case Numerical results The fully nonlinear case Backward SDE : Definition Find an F W − adapted ( Y , Z ) satisfying : � T � T Y t = G + F r ( Y r , Z r ) dr − Z r · dW r t t i.e. dY t = − F t ( Y t , Z t ) dt + Z t · dW t and Y T = G where the generator F : Ω × [ 0 , T ] × R × R d − → R , and { F t ( y , z ) , t ∈ [ 0 , T ] } is F W − adapted If F is Lipschitz in ( y , z ) uniformly in ( ω, t ) , and G ∈ L 2 ( P ) , then there is a unique solution satisfying � T | Y t | 2 + E | Z t | 2 dt E sup < ∞ t ≤ T 0 Nizar TOUZI Nonlinear Monte Carlo

  15. Motivation : American options A natural MC-FD scheme The Probabilistic Scheme The semilinear case Numerical results The fully nonlinear case Markov BSDE’s Let X . be defined by the (forward) SDE dX t = b ( t , X t ) dt + σ ( t , X t ) dW t : [ 0 , T ] × R d × R × R d − and F t ( y , z ) = f ( t , X t , y , z ) , f → R g : R d − G = g ( X T ) ∈ L 2 ( P ) , → R If f continuous, Lipschitz in ( x , y , z ) uniformly in t , then there is a unique solution to the BSDE dY t = − f ( t , X t , Y t , Z t ) dt + Z t · σ ( t , X t ) dW t , Y T = g ( X T ) Moreover, there exists a measurable function V : Y t = V ( t , X t ) , 0 ≤ t ≤ T Nizar TOUZI Nonlinear Monte Carlo

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend