a new self aligned quantum well mosfet architecture
play

A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a - PowerPoint PPT Presentation

A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process Jianqiang Lin, Xin Zhao, Tao Yu, Dimitri A. Antoniadis, and Jess A. del Alamo Microsystems Technology Laboratories, MIT December 10, 2013


  1. A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process Jianqiang Lin, Xin Zhao, Tao Yu, Dimitri A. Antoniadis, and Jesús A. del Alamo Microsystems Technology Laboratories, MIT December 10, 2013 Sponsors: FCRP-MSD Center, Intel, E3S STC, MIT SMA and SMART 1

  2. Motivation • Superior electron transport properties in InAs channel [J. del Alamo, Nature 2011] InAs HEMTs Strained Si V DS =0.5 V Si V DS =1.1-1.3 V 2 2

  3. InGaAs MOSFET evolution Performance (Kim, IEDM 2012) [del Alamo, ESSDERC 2013] Fabrication and Scaling 3

  4. InGaAs MOSFET evolution Performance (This work) (Kim, IEDM 2012) [del Alamo, ESSDERC 2013] Fabrication and Scaling 4

  5. New InGaAs MOSFET with self-aligned LEDGE • Bottleneck to ON current is R sd • Introduction of highly conductive “LEDGE” – n + region linking metal contact and channel 5

  6. Process integration Key features: Wet-etch free / Lift-off free / Au free Gate opening 3-step gate recess Ohmic/Oxide deposition* Gate metal ALD deposition Pad formation 6

  7. Composite W/Mo contact • Without W: Long undercut of Mo due to oxidation – Limits S/D metal spacing • With W: No Mo oxidation Air void s This work [Lin, IEDM 2012] 7

  8. 3-step gate recess process Digital etch*: CF 4 +O 2 RIE * Cl-based RIE O 2 plasma + H 2 SO 4 *[Waldron, IEDM 2007] *[Lin, EDL submitted] Process enables precise control of: t ch / L ledge / t ledge L g L ledge t ledge t ch 8

  9. Semiconductor surface after recess Only wet cleaning Additional cap dry etch (~ 20 (no etching) nm) + 4 cycle digital etch 5 nm RMS = 0.12 nm RMS = 0.21 nm Scanning area: 2x2  m 2 9

  10. Structure design: Ledge Short Ledge Long Ledge 10

  11. Structure design: Ledge Short Ledge Long Ledge • Surface channel: In 0.7 Ga 0.3 As / InAs / In 0.7 Ga 0.3 As = 1/2/5 nm 11 • High-k: HfO 2 , thickness =2.5 nm (EOT~0.5 nm)

  12. Output and g m characteristics for L g = 70 nm V gs -V t = 0 to 0.5 V in 0.1 V step 1.0 3.0 L ledge =5 nm, L ledge = 5 nm 2.5 2.7 mS/  m 0.8 L ledge = 70 nm I d (mA/  m) g m (mS/  m) 2.0 L ledge =70 nm, 0.6 1.9 mS/  m 1.5 0.4 1.0 0.2 0.5 V ds = 0.5 V 0.0 0.0 0.0 0.1 0.2 0.3 0.4 0.5 -0.4 -0.2 0.0 0.2 0.4 V ds (V) V gs (V) • R on = 220  m for L ledge = 5 nm • Record g m,max = 2.7 mS/  m at V ds = 0.5 V for L ledge = 5 nm 12

  13. Subthreshold characteristics L ledge =70 nm L ledge =5 nm -3 -3 V ds =0.5 V 10 10 V ds =0.5 V S min =138 mV/dec S min =94 mV/dec -5 -5 I d (A/  m) 10 10 I d (A/  m) V ds =0.05 V V ds =0.05 V S min =90 mV/dec S min =108 mV/dec -7 -7 10 10 DIBL=249 mV/V DIBL=130 mV/V -9 -9 10 10 -0.4 -0.2 0.0 0.2 -0.2 0.0 0.2 0.4 V gs (V) V gs (V) • I g < 10 pA/µm over entire voltage range – Further EOT scaling possible 13

  14. Subthreshold characteristics L ledge =70 nm L ledge =5 nm -3 -3 V ds =0.5 V 10 10 V ds =0.5 V S min =138 mV/dec Flattening S min =94 mV/dec tail at high -5 -5 I d (A/  m) 10 10 I d (A/  m) V ds V ds =0.05 V V ds =0.05 V S min =90 mV/dec S min =108 mV/dec -7 -7 10 10 DIBL=249 mV/V DIBL=130 mV/V -9 -9 10 10 -0.4 -0.2 0.0 0.2 -0.2 0.0 0.2 0.4 V gs (V) V gs (V) • I g < 10 pA/µm over entire voltage range – Further EOT scaling possible 14

  15. L g = 20 nm InAs QW-MOSFET with L ledge = 5 nm V gs -V t = 0.5 V 1.0 L g =20 nm R on =224  m 0.8 I d (mA/  m) 0.4 V 0.6 0.4 0.2 0.0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) • Smallest functional III-V MOSFET with tight contact spacing 15

  16. Parasitic resistance analysis R probe = 5  m L ledge =70 nm, R sd =302  m R metal = 5  m R cont = 50  m 500 R ledge ~ 1  m/nm Pad R on (  m) R bar = 40  m 400 W/Mo Gate 300 L ledge =5 nm, n+ Cap R sd =206  m Channel 200 0 200 400 Buffer L g (nm) • For short ledge devices, major R sd contribution from R cont and R bar 16

  17. Benchmark: I on InGaAs FETs 500 Planar Trigate 400 I on (  A/  m) MIT HEMT MIT MOSFET 2012 300 This work( L ledge =70 nm) This work( L ledge =5 nm) 200 I off =100 nA/  m, V dd =0.5 V * 100 0 50 100 150 200 L g (nm) * [Kim and del Alamo, T-ED 2008] • Record I on = 410  A/  m at L g =70 nm for L ledge =70 nm 17

  18. Benchmark: g m,max vs. S 3.0 InGaAs FETs 2.5 Planar g m-max (mS/  m) Trigate 2.0 MIT HEMT Teledyne/MIT HEMT 1.5 MIT MOSFET 2012 This work( L ledge =70nm) 1.0 V ds = 0.5 V This work( L ledge =5 nm) 0.5 L g  70 nm 0.0 0 100 200 300 400 S min (mV/dec) • Short ledge MOSFETs show record g m,max • Long ledge MOSFETs match record S [Radosavljevic, IEDM 2011] 18

  19. Impact of ledge on off-state leakage (Long MOSFETs) L g = 200 nm, L ledge = 70 nm L g = 500 nm, L ledge = 5 nm -4 -4 10 10 Flattening I d I d I d or I g (A/  m) -6 -6 tail at high 10 10 V ds -8 -8 10 10 V ds =0.1 to 0.6 V V ds =0.1 to 0.6 V -10 -10 I g 10 10 I g -12 -12 10 10 -14 -14 10 10 -0.4 -0.2 0.0 0.2 -0.2 0.0 0.2 0.4 V gs (V) V gs (V) • Short ledge leads to high I off • Strong V ds dependence 19

  20. Off-state leakage: Temperature dependence L g = 500 nm, L ledge = 5 nm 300K 77K 150K -4 10 -4 -4 10 10 I d I d I d or I g (A/  m) I d -6 -6 -6 10 10 10 -8 -8 -8 10 10 10 V ds =0.1 to 0.6 V -10 I g -10 -10 10 10 10 I g I g -12 -12 -12 10 10 10 -14 -14 -14 10 10 10 -0.4 -0.2 0.0 0.2 -0.4 -0.2 0.0 0.2 -0.4 -0.2 0.0 0.2 V gs (V) V gs (V) V gs (V) • GIDL (gate-induced drain leakage) signature 20

  21. Off-state leakage follows BTBT signature � � � � ���� ~ exp� � � � � �� -8 V ds =0.6 V 10 |I s | ( A/  m) V gs = -0.4 V -8 |I s | (A/  m) 10 V ds = 0.6 V -10 10 V ds = 0.5 V 300K -9 150K V ds = 0.4 V 10 77K T=77 K -12 10 0.44 0.48 0.52 1.0 1.2 1.4 -1 (V -1 ) 3/2 ( eV 3/2 ) V dg E g • I s follows BTBT dependence on V dg and E g 21

  22. GIDL simulations TCAD simulation of BTBT rate based on nonlocal path BTBT model: n+ contact Gate InP Oxide InGaAs InAs S D InGaAs G InAlAs 2 nm E c BTBT E v 22

  23. Conclusions • Novel self-aligned III-V QW-MOSFETs: – Lift-off free, wet-etch free, and Au free in front end process – Design and fabrication of critical S/D ledge – Tight metal contact spacing – Scaled channel thickness, barrier thickness and gate length • Record results demonstrated: – g m,max = 2.7 mS/  m in L ledge = 5 nm – I on = 410  A/  m in L ledge = 70 nm • Characteristic GIDL signature observed 23

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend