a 83 db sfdr 10 mhz bandwidth a 83 db sfdr 10 mhz
play

A 83-dB SFDR 10-MHz Bandwidth A 83-dB SFDR 10-MHz Bandwidth - PowerPoint PPT Presentation

A 83-dB SFDR 10-MHz Bandwidth A 83-dB SFDR 10-MHz Bandwidth Continuous-Time Delta-Sigma Modulator Employing a One-Element- M d l t E l i O El t Shifting Dynamic Element Matching Hong Phuc Ninh, Masaya Miyahara, and Akira Matsuzawa


  1. A 83-dB SFDR 10-MHz Bandwidth A 83-dB SFDR 10-MHz Bandwidth Continuous-Time Delta-Sigma Modulator Employing a One-Element- M d l t E l i O El t Shifting Dynamic Element Matching Hong Phuc Ninh, Masaya Miyahara, and Akira Matsuzawa Akira Matsuzawa Tokyo Institute of Technology, Japan Matsuzawa Matsuzawa & Okada Lab. & Okada Lab.

  2. 1 Outline • Background Background • Proposed one-element-shifting (OES) DEM method (OES) DEM method • Implementation and measurement results lt • Conclusion Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  3. 2 Outline • Background Background • Proposed one-element-shifting (OES) DEM method (OES) DEM method • Implementation and measurement results lt • Conclusion Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  4. 3 Receiver architecture TV tuner 2G/3G cellular WLAN … *10 MHz bandwidth (our target design) *High Dynamic Range (DR) *High Spurious-Free Dynamic Range (SFDR) ΣΔ ADC is a hopeful solution to achieve high DR & SFDR Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  5. ΣΔ ADC architecture 4 N: Quantizer resolution N: Quantizer resolution OSR: oversampling ratio (=Fs/2/BW) L: filter order L=4 L=4 150 Continuous-time ΣΔ ADC with N=1,2,3,4 of F s multi-bit quantizer & DAC L=3 ation o 100 Our design L=2 DAC linearity SNR L=1 L=1 S Limita is an issue i i 50 Low resolution L 0 1 10 100 OSR Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  6. 5 Linearity issues of feedback DAC Input stage of ΣΔ ADC f ΣΔ ADC C in C i I t t Unity cell R in N V ip V om + - V V im - + V op P R in Static error Static error C in in Mismatch In n <7> In p <7> In n < 1 > In p < 1 > In n < 0 > In p < 0 > Ex: Ex: 1.05 1 05 1 02 1.02 0 98 0.98 Mismatch deviation Transitor size For simplicity, a 3bit DAC is considered Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  7. 6 Linearity issues of feedback DAC Input stage of ΣΔ ADC f ΣΔ ADC C in C i I t t R in N V ip V om + - V im V - + V op P R in Dynamic error Dynamic error C in in Glitch In n <7> In p <7> In n < 1 > In p < 1 > In n < 0 > In p < 0 > Parasitic capacitance P iti it Normalized Non-ideal switching glitch energy For high speed operation, dynamic F hi h d ti d i error becomes more critical Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  8. 7 What is glitch energy? Switching asymmetry I (uA) T (ns) Glitch energy (Glitch area) Glitch energy: average of 8192points Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  9. 8 Requirements of DAC linearity Static error Dynamic error Mismatch Glitch 90 80 70 60 60 50 0.3% 1.6% 40 40 0 1 2 3 4 5 R Requirement for SNR>70dB i t f SNR 70dB (BW=10MHz, Fs=500MHz) Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  10. 9 Outline • Motivation Motivation • Proposed one-element-shifting (OES) DEM method (OES) DEM method • Implementation and measurement results lt • Conclusion Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  11. 10 DEM topology summary DWA-group TC-group Prop. (ADWA, Bi-DWA) (RTC, RSTC) OES Glitch Bad Excellent Good Mismatch Good Mismatch Good Excellent Excellent Bad Bad (DEM: to improve DAC linearity) *Data Weighted Averaging (DWA) [1] *Advanced Random DWA (ADWA) [2] *Bi-directional DWA (Bi-DWA) [3] *Thermometer Coding (TC, w/o DEM) *Th t C di (TC / DEM) *Randomized Thermometer Coding (RTC) [4] *Restricted Swapping Thermometer Coding (RSTC) [5] [1] R. T. Baird et al. , IEEE Trans. Circuits Syst. II, , Dec. 1995. [1] R T Baird et al Dec 1995 IEEE Trans Circuits Syst II [2] I. Fujimori et al. , IEEE J. Solid-State Circuits , Dec. 2000. [3] D. H. Lee et al. , IEEE Trans. Circuits Syst. II, Oct. 2007. [4] D. H. Lee et al. , IEEE Trans. Circuits Syst. II, Feb. 2009. Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. [5] M. H. Shen et al. , IEEE Trans. Circuits Syst. II, May. 2010. & Okada Lab. & Okada Lab.

  12. 11 OES: Eliminating Effect of Glitch By reducing the number of switched elements g ( n ) (w/ same other glitch conditions) g ( n ) Glitch energy + − + − ≤ + − − ≥ − ⎧ ⎧ 2 ( ) ( 1 ), ( ) ( 1 ) x ( n ) x ( n 1 ), x ( n ) x ( n 1 ) N x n x n x n x n = = ⎨ ⎨ ( ) g n g ( n ) − − − + − > − − < − ⎩ ⎩ ( ) ( 1 ) , ( ) ( 1 ) 2 N x ( n ) x ( n 1 ), x ( n ) x ( n 1 ) N x n x n x n x n = − − g ( n ) x ( n ) x ( n 1 ) Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  13. 12 Glitch Energy g ( n ) Glitch energy Sim condition *tfb tf trb tr 20ps *tfb-tf = trb-tr =20ps *Cp=10fF *3bit DAC ( (w/o mismatch) ) Requirement for SNR>70dB (BW=10MHz, Fs=500MHz) Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  14. 13 OES: Preserve Reduction of Mismatch Effect By reducing the mismatch error spectrum in the interesting bandwidth (w/ same mismatch deviation) (w/ same mismatch deviation) OES ADWA RSTC (Good) (Good) (Excellent) (Excellent) (Bad) (Bad) pectrum [dB] pectrum [dB] pectrum [dB] 0 0 -20 -20 -40 -40 AC mismatch sp AC mismatch sp AC mismatch sp -60 -60 -80 -80 -100 -100 -120 120 -120 120 DA DA DA 0 50 100 150 200 250 0 50 100 150 200 250 Frequency [MHz] Frequency [MHz] (1%mismatch input: 1MHz@ 30dBFS) (1%mismatch, input: 1MHz@-30dBFS) Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  15. 14 Mismatch requirement Mismatch DAC area Sim condition Mismatch Mismatch *tfb tf trb tr 0ps *tfb-tf = trb-tr =0ps *Cp=10fF Relaxation *3bit DAC (w/o glitch) ( g ) Requirement for SNR>70dB (BW=10MHz, Fs=500MHz) Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  16. 15 With Both of Glitch and Mismatch 90 w/glitch w/o DEM w/glitch OES 80 RSTC RTC 70 60 Bi-DWA ADWA 50 50 0 1 2 3 mismatch OES achieves better SNDR & SFDR OES achieves better SNDR & SFDR performance over the published DEM methods Sim condition Sim condition *tfb-tf = trb-tr =20ps *Cp=10fF *3bit DAC (w/ mismatch) Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  17. 16 Outline • Background Background • Proposed one-element-shifting (OES) DEM method (OES) DEM method • Implementation and measurement results lt • Conclusion Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  18. 17 System architecture M d l t Modulator Spec S FF+FB, 3 rd order 4bit AD/DA BW: 10MHz Fs: 500MHz Fs: 500MHz SNDR req : 70dB 90nm CMOS process Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  19. 18 OES DEM architecture Example for 4 elements DAC OES DEM OES DEM *Simplicity (no extra pointer, no register) i t i t ) *Relax timing requirement for feedback DAC f f db k DAC Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  20. 19 Modulator layout OES DEM Core area: 9% Power consumption: 6% Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  21. 20 Measurement Results Remove by w/o DEM digital filter g OES DEM OES-DEM BW W/o DEM OES DEM SNDR 62.8 63.3 SFDR 71.8 82.6 Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  22. 21 Measurement Results SNDR-w/o DEM SFDR-w/o DEM SNDR-OES DEM SFDR-OES DEM Average of 10dB SFDR improvement are achieved Matsuzawa Matsuzawa 2011/11/30 H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

  23. 22 Performance Comparison Unit Unit This work This work [6] [6] [7] 7] [8] [8] Type/ DEM pe/ DEM CT/OES T/OES CT/DW T/DWA DT/DEM T/DEM CT/DW T/DWA B Ban B andwidth d idth d idth MHz MH MH MH 10 10 10 10 20 20 20 20 5 5 10 10 10 10 Samp. freq. Samp. freq. MHz Hz 500 500 640 640 80 80 300 300 SFDR SFDR dB dB 83 83 77 77 * 85 85 64 64 * SNDR SNDR dB dB 65 65 63.9 63.9 75.4 75.4 62.5 62.5 DR DR dB dB 66 66 68 68 - 70.2 70.2 P Power ower mW W 15 15 7 15.7 15 58 58 58 58 36 36 36 36 5 31 5 3 5.31 31 CMOS proc. CMOS proc. nm 90 130 130 180 180 110 FoM FoM fJ/conv J/conv 530 530 1130 130 750 750 240 240 *Better SFDR (compared with conv. DEM method) *Less power (w/ same SFDR) Less power (w/ same SFDR) [6]J. G. Jo et al. , ASSCC Dig. Tech. Papers , Nov. 2010. [7]O. Rajaee et al. , IEEE J. Solid-State Circuits , Apr. 2010. Matsuzawa Matsuzawa 2011/11/30 [8]K. Matsukawa et al. , IEEE Symp. on VLSI Circuits , Jun. 2009. H.P. Ninh, Tokyo Tech. & Okada Lab. & Okada Lab.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend