3d rupture effects seismogenic depth
play

3D rupture effects (seismogenic depth) Huihui Weng Jean-Paul - PowerPoint PPT Presentation

3D rupture effects (seismogenic depth) Huihui Weng Jean-Paul Ampuero ICTP, Trieste, Italy, 2-14 Sep. Rupture speeds in 2D Modes II (strike slip) Supershear Sub-Rayleigh v R v S v E v P Rupture speed Unstable Modes III (dip slip)


  1. 3D rupture effects (seismogenic depth) Huihui Weng Jean-Paul Ampuero ICTP, Trieste, Italy, 2-14 Sep.

  2. Rupture speeds in 2D Modes II (strike slip) Supershear Sub-Rayleigh v R v S v E v P Rupture speed Unstable Modes III (dip slip) Subshear Rupture speed v S

  3. Stable speeds in 2D Modes II (strike slip) velocity term g(v) for energy release rate Supershear Sub-Rayleigh v R v S v E v P Rupture speed Unstable Modes III (dip slip) Subshear Rupture speed v S

  4. Finite seismogenic width h h c c n n e e r r T T Aseismic stable Aseismic stable S S u u b b d d u u c c t t i i n n g g p p l l a a c c e e Aseismic stable Aseismic stable Seismogenic Zone Weng and Ampuero, 2019 Fault and Rock Mechanics (FARM)

  5. Elongated earthquake ruptures 2004 Mw 9.3 Sumatra >10 10 2004 Mw 6 Parkfield SRCMOD Wells and Coppersmith, 1994 8 Henry and Das, 2001 Strike-slip Dip-slip 6 L / W 4 2 Ma et al 2008 0 3 4 5 6 7 8 9 10 M w Ishii et al 2005

  6. Elongated earthquake ruptures Galis et al 2018

  7. overview • Equation of motion for mode III in 3D • Equation of motion for mode II in 3D -- Subshear -- Supershear • Ruptures of mixture of modes II and III

  8. overview • Equation of motion for mode III in 3D • Equation of motion for mode II in 3D -- Subshear -- Supershear • Ruptures of mixture of modes II and III

  9. Warm-ups Kinematics Dynamics http://sdsu-physics.org sciencenotes.org F = ma Newton’s second law

  10. Slip inversion method Ide, 1997

  11. Imaged by back-projection • Track rupture speed • High frequency data • Seismic array Meng et al. (2016) Hutko (2009)

  12. Questions • How to explain observed source kinematics? • What is the intrinsic earthquake physics ? • How to link kinematics and dynamics of earthquakes?

  13. Fracture mechanics: -- connection between kinematics and dynamics

  14. Linear elastic fracture mechanics Ø Energy balance between energy release rate and fracture energy Ø Rupture speed as a function of distance Kostrov, Freund, Andrews (60-70s)

  15. Linear elastic fracture mechanics K I Kostrov, Freund, Andrews (60-70s)

  16. Linear elastic fracture mechanics K I Kostrov, Freund, Andrews (60-70s)

  17. Linear elastic fracture mechanics • Classical LEFM is not “inertial” • Speed is independent of acceleration Jump of fracture enregy G c L Response immediately v r Infinite acceleration L

  18. Crack in bounded media Waves are reflected back Marder (1998) Ø Release elastic energy is linearly proportional to width of strip LEFM Ø

  19. Strip experiments Livne et al 2008 Goldman et al 2010

  20. Inertial equation of motion

  21. Inertial equation of motion Force? Apparent mess? Acceleration F = ma

  22. Key points 1 Classical LEFM links kinematics and dynamics of 2D infinite media, which is not “inertial” 2 The crack-tip-equation-of-motion for 2D strip media is “inertial” Which may control ruptures on 3D bounded fault? 1 or 2 ?

  23. The dynamics of elongated ruptures : -- Rupture acceleration (how rupture begins?) -- Rupture deceleration (how rupture stops?)

  24. Analytical model W Ingredients • Anti-plane fault embed in 3D full-space • Uniform elastic properties • Uniform fault parameters • Uniform seismogenic width • Steady-state speed

  25. Analytical model (3 equations) x 1 x 2 x 3 Aseismic region Aseismic region e l i f o r Aseismic region Aseismic region p p i l S Seismogenic width W

  26. Analytical model (3 equations) x 1 Reduce to 1 equation x 2 x 3 Aseismic region Aseismic region e l i f o r Aseismic region Aseismic region p p i l S Seismogenic width W

  27. Analytical model (3 equations) x 1 Reduce to 1 equation x 2 x 3 Aseismic region Aseismic region Sin(k 3 x 3 ) Slip profile Slip approximation Aseismic region Aseismic region Seismogenic width W

  28. Analytical model (3 equations) x 1 Reduce to 1 equation x 2 x 3 Aseismic region Aseismic region Sin(k 3 x 3 ) Slip profile Slip approximation Aseismic region Aseismic region Seismogenic width W

  29. Energy release rate ü Energy release rate G is a constant independent of rupture s peed and distance, i.e., G = G 0 ü G c = G 0 à propagate at any speed G c ≠ G 0 ?

  30. Energy balance at rupture tip Intuitive physical process • G 0 = G c à ruptures propagate steadily • G 0 > G c à ruptures accelerate ↑ • G 0 < G c à ruptures decelerate ↓ edennyweb.wordpress.com

  31. Validation from numerical simulations τ τ s τ 0 d 0 τ d d

  32. Rupture acceleration • G 0 > G c à ruptures accelerate ↑ • G c / G 0 plays an important role in controlling rupture speed 1.0 a 0.8 Energy ratio decreases 0.6 v r / v s 2.5D simulations 0.4 G c / G 0 0.99 0.93 · 0.98 0.92 0.2 0.97 0.9 0.96 0.8 0.95 0.7 0.94 0.6 0.0 0 5 10 15 20 L / W Weng and Ampuero, 2019

  33. Rupture acceleration • G 0 > G c à ruptures accelerate ↑ • G c / G 0 plays an important role in controlling rupture speed 1.0 a 0.8 Energy ratio decreases 0.6 v r / v s 2.5D simulations 0.4 G c / G 0 0.99 0.93 · 0.98 0.92 0.2 0.97 0.9 0.96 0.8 0.95 0.7 0.94 0.6 0.0 0 5 10 15 20 L / W Weng and Ampuero, 2019

  34. Rupture acceleration • G 0 > G c à ruptures accelerate ↑ • G c / G 0 plays an important role in controlling rupture speed 1.0 a 0.8 Energy ratio decreases 0.6 v r / v s 2.5D simulations 0.4 G c / G 0 0.99 0.93 · 0.98 0.92 0.2 0.97 0.9 0.96 0.8 0.95 0.7 0.94 0.6 0.0 0 5 10 15 20 L / W Weng and Ampuero, 2019

  35. Rupture acceleration • G 0 > G c à ruptures accelerate ↑ • G c / G 0 plays an important role in controlling rupture speed 1.0 a b 3 A = π and P = 3 0.8 2 / (1 - G c / G 0 ) 2 0.6 v r / v s 2.5D simulations v r W / v s 0.4 1 G c / G 0 0.99 0.93 · 0.98 0.92 0.2 0.97 0.9 0.96 0.8 0.95 0.7 0.94 0.6 0.0 0 0 5 10 15 20 0.0 0.2 0.4 0.6 0.8 1.0 L / W v r / v s Weng and Ampuero, 2019

  36. Rupture deceleration • G 0 < G c à ruptures decelerate ↓ • Starting speed also plays a role • Larger rupture speed lead to longer distance a 1.0 G c / G 0 1.01 1.05 1.02 1.06 0.8 1.03 1.07 1.04 1.08 0.6 v r / v s v / v 0.4 · 0.2 G c / G 0 = 0.9 0.0 0 10 20 L / W 2.5D simulations Weng and Ampuero, 2019

  37. Rupture deceleration • G 0 < G c à ruptures decelerate ↓ • Starting speed also plays a role • Larger rupture speed lead to longer distance a 1.0 G c / G 0 1.01 1.05 1.02 1.06 0.8 1.03 1.07 1.04 1.08 0.6 v r / v s v / v 0.4 · 0.2 G c / G 0 = 0.9 0.0 0 10 20 L / W 2.5D simulations Weng and Ampuero, 2019

  38. Rupture deceleration • G 0 < G c à ruptures decelerate ↓ • Starting speed also plays a role • Larger rupture speed lead to longer distance c a 1.0 4 G c / G 0 A = 1.2 π 1.01 1.05 1.02 1.06 0.8 1.03 1.07 P = 2.6 1.04 1.08 3 2 / (1- G c /G 0 ) 0.6 v r / v s v / v 2 0.4 v r W / v s · · 1 0.2 G c / G 0 = 0.9 0.0 0 0 10 20 0.0 0.2 0.4 0.6 0.8 1.0 L / W v r / v s 2.5D simulations Weng and Ampuero, 2019

  39. Validation from 3D simulations 1.0 1.0 A = 1.2 π P = 2.6 0.8 0.8 Rupture speed Rupture speed 0.6 0.6 A = π and P = 3 v r / v s v r / v s 0.4 0.4 G c / G 0 0.97 G c / G 0 0.88 0.2 0.2 0.95 0.84 1.03 1.08 0.92 0.7 1.04 1.1 0.9 0.6 1.06 Theoretical curves Theoretical curves 0.0 0.0 0 5 10 0 5 10 L / W Distance L / W Distance Weng and Ampuero, 2019

  40. “Inertial” rupture asperity barrier a 1.0 b 0.2 0.8 0.6 0.1 2 v r / v s v r W / v s 0.4 · Acceleration 0.0 Deceleration 0.2 −0.1 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0 10 20 30 40 v r / v s L / W • Rupture evolution predicted by rupture-tip-equation-of-motion • Rupture is also “inertial” Weng and Ampuero, 2019

  41. Elongated ruptures in the lab

  42. Key points 1 Closed-form energy release rate on 3D bounded fault is a constant: 2 Ruptures on 3D bounded fault are controlled by the theoretical equation for very long ruptures:

  43. Implications: -- Rupture potential and final earthquake size -- Super-cycle

  44. Rupture potential Propagation direction R 1 R 3 G 0 G c R 4 R 2 2 3 4 1 asperity barrier asperity barrier

  45. Rupture potential Propagation direction R 1 R 3 G 0 “Kinetic” energy? “Potential” energy? G c R 4 R 2 2 3 4 1 asperity barrier asperity barrier

  46. Rupture potential Propagation direction R 1 R 3 G 0 “Kinetic” energy? “Potential” energy? G c R 4 R 2 Rupture potential 2 3 4 1 asperity barrier asperity barrier

  47. Determine earthquake size A(1-G c /G 0 ) Along strike 0 Rupture potential φ(x) Gravity potential Weng and Ampuero, JGR, in revision www.thinglink.com

  48. Determine earthquake size A(1-G c /G 0 ) Along strike 0 Rupture potential φ(x) Gravity potential Weng and Ampuero, 2019 www.thinglink.com

  49. Determine earthquake size A(1-G c /G 0 ) Along strike 0 Rupture potential φ(x) Gravity potential Weng and Ampuero, 2019 www.thinglink.com

  50. Super earthquake cycles? Ø Fault segmentation Ø Maximum magnitude? Villegas-Lanza et al., (2016)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend