0 1 0 1 3 a 3 b
play

0 1 0 1 3 A = 3 B = 0 0 1 2 0 1 2 - PowerPoint PPT Presentation

S TRING AND B AND C OMPLEXES OVER C ERTAIN A LGEBRA OF D IHEDRAL T YPE Jos A. Vlez-Marulanda V ALDOSTA S TATE U NIVERSITY Joint work with Hernn Giraldo U NIVERSIDAD DE A NTIOQUIA Maurice Auslander Distinguished Lectures and International


  1. S TRING AND B AND C OMPLEXES OVER C ERTAIN A LGEBRA OF D IHEDRAL T YPE José A. Vélez-Marulanda V ALDOSTA S TATE U NIVERSITY Joint work with Hernán Giraldo U NIVERSIDAD DE A NTIOQUIA Maurice Auslander Distinguished Lectures and International Conference, Woods Hole, MA, May 2, 2016

  2. S ET U P In this talk: k is an algebraically closed field of arbitrary characteristic. • The Λ ’s always denote finite-dimensional k -algebras. • Unless explicitly stated otherwise, all our modules are modules from the • right. We denote by mod Λ the abelian category of finitely generated right • Λ -modules, and P Λ denotes the full subcategory of mod Λ whose ob- jects are finitely generated projective Λ -modules. K b ( P Λ ) denotes the triangulated category of perfect complexes over • Λ and D b ( mod Λ ) denotes the bounded derived category of mod Λ . String and Band Complexes over Certain Algebra of Dihedral Type J.A. Vélez-Marulanda

  3. M OTIVATION & B ACKGROUND Let V • be an object of D − ( mod Λ ) that has finitely many non-zero cohomology groups, all which have finite dimension over k . In 2015, F. M. B LEHER and V-M proved that V • has a well-defined versal deforma- • tion ring R ( Λ , V • ) , which is a complete local commutative Noetherian k -algebra with residue field k . Moreover, the isomorphism class of R ( Λ , V • ) is preserved un- der derived equivalences. They also proved that versal deformation rings of modules are preserved un- • der stable equivalences of Morita type (as introduced by M. B ROUÉ in 1994) between self-injective k -algebras. In 2016, in an ongoing research, V-M proved that versal deformation rings of • Cohen-Macaulay modules are preserved under singular equivalences of Morita type between Gorenstein k -algebras. These singular equivalences of Morita type where introduced in a preprint by X. • W. C HEN and L. G. S UN during 2012 and then formally discussed in a published article by G. Z HOU and A. Z IMMERMANN in 2013. The ultimate goal is to use “nice" descriptions of such complexes V • to explicitly describe R ( Λ , V • ) for when Λ is e.g. a Gorenstein k -algebra. String and Band Complexes over Certain Algebra of Dihedral Type J.A. Vélez-Marulanda

  4. M OTIVATION & B ACKGROUND In general, it is a difficult problem to describe the indecomposable objects in • D b ( mod Λ ) . Assume that Λ is a gentle algebra as introduced by I. A SSEM and A. S KOWRO ´ • NSKI in 1987. In 2003, V. B EKKERT and H. A. M ERKLEN provided a combinatorial description • of the indecomposable objects in D b ( mod Λ ) . They used so-called string and band complexes, which are indecomposable objects in K b ( P Λ ) . They used the obtained results to prove that gentle algebras are derived tame • as introduced by C H . G EISS & H. K RAUSE in 2002. Then in 2011, G. B OBI ´ NSKI used these string and band complexes to describe the • almost split triangles in K b ( P Λ ) . He also showed the relation between the description provided by V. B EKKERT • and H. A. M ERKLEN with the Happel functor F : D b ( mod Λ ) → mod ˆ Λ , where mod ˆ Λ denotes the stable module category of the repetitive algebra ˆ Λ . Question: How about self-injective non-gentle algebras? String and Band Complexes over Certain Algebra of Dihedral Type J.A. Vélez-Marulanda

  5. � � � � � � � � � � � � � � � A LGEBRAS OF D IHEDRAL T YPE Consider the following quivers. τ 0 � • τ 1 � • τ 0 � • τ 1 � • 3 A = • 3 B = • ζ 0 0 1 2 0 1 2 γ 1 γ 2 γ 1 γ 2 τ 0 � • τ 1 � • τ 0 3 D = • 3 L = • � • ζ 0 ζ 2 ζ 0 � ✽✽✽✽✽✽✽ 0 1 2 0 1 � ✝✝✝✝✝✝✝ γ 1 γ 2 τ 2 τ 1 • 2 τ 0 τ 0 3 Q = • � • 3 R = • � • ζ 0 ζ 1 ζ 0 ζ 1 � ✽✽✽✽✽✽✽ � ✽✽✽✽✽✽✽ 0 0 1 1 � ✝✝✝✝✝✝✝ � ✝✝✝✝✝✝✝ τ 2 τ 1 τ 2 τ 1 • • 2 2 ζ 2 String and Band Complexes over Certain Algebra of Dihedral Type J.A. Vélez-Marulanda

  6. A LGEBRAS OF D IHEDRAL T YPE Let Λ be one of the following bounded path algebras. = k [ 3 A ] / � τ 0 τ 1 , γ 2 γ 1 , ( γ 1 τ 0 ) 2 − ( τ 1 γ 2 ) 2 � D ( 3 A ) 2,2 2 = k [ 3 B ] / � γ 1 ζ 0 , ζ 0 τ 0 , τ 0 τ 1 , γ 2 γ 1 , ( γ 1 τ 0 ) 2 − ( τ 1 γ 2 ) 2 , ( τ 0 γ 1 ) 2 − ζ 2 D ( 3 B ) 2,2,2 0 � 2 0 , ( γ 2 τ 1 ) 2 − ζ 2 D ( 3 D ) 1,2,2,2 = k [ 3 D ] / � γ 1 ζ 0 , ζ 0 τ 0 , τ 0 τ 1 , γ 2 γ , τ 1 ζ 2 , ζ 2 γ 2 , τ 0 γ 1 − ζ 2 2 , γ 1 τ 0 − ( τ 1 γ 2 ) 2 � 2 D ( 3 L ) 2,2 = k [ 3 L ] / � ζ 0 τ 0 , τ 2 ζ 0 , ( τ 0 τ 1 τ 2 ) 2 − ζ 2 0 , ( τ 1 τ 2 τ 0 ) 2 τ 1 � D ( 3 Q ) 1,2,2 = k [ 3 Q ] / � ζ 0 τ 0 , τ 2 ζ 0 , τ 0 ζ 1 , ζ 1 τ 1 , τ 0 τ 1 τ 2 − ζ 2 0 , τ 1 τ 2 τ 0 − ζ 2 1 � D ( 3 Q ) 2,2,2 = k [ 3 Q ] / � ζ 0 τ 0 , τ 2 ζ 0 , τ 0 ζ 1 , ζ 1 τ 1 , ( τ 0 τ 1 τ 2 ) 2 − ζ 2 0 , ( τ 1 τ 2 τ 0 ) 2 − ζ 2 1 � D ( 3 R ) 1,2,2,2 = k [ 3 R ] / � ζ 0 τ 0 , τ 0 ζ 1 , ζ 1 τ 1 , τ 1 ζ 2 , ζ 2 τ 2 , τ 2 ζ 0 , τ 0 τ 1 τ 2 − ζ 2 0 , τ 1 τ 2 τ 0 − ζ 2 1 , τ 2 τ 0 τ 1 − ζ 2 2 � String and Band Complexes over Certain Algebra of Dihedral Type J.A. Vélez-Marulanda

  7. A LGEBRAS OF D IHEDRAL T YPE Theorem 1. (T. H OLM , 1999) The algebras D ( 3 B ) 2,2,2 , D ( 3 D ) 1,2,2,2 , D ( 3 Q ) 2,2,2 2 2 and D ( 3 R ) 1,2,2,2 (resp. D ( A ) 2,2 2 , D ( L ) 2,2 and D ( 3 Q ) 1,2,2 ) are derived equiv- alent. Thus, we can restrict ourselves to the algebras Λ 0 = D ( 3 R ) 1,2,2,2 and Λ 1 = D ( 3 Q ) 1,2,2 . Remark 2. The results obtained for Λ 0 can be adjusted for Λ 1 by letting ζ 2 = 1 2 in the graph of 3 Q , where 1 2 denotes the path of length zero that starts and ends at the vertex 2 . String and Band Complexes over Certain Algebra of Dihedral Type J.A. Vélez-Marulanda

  8. I NDECOMPOSABLE P ROJECTIVE Λ 0 - MODULES M [ 1 0 ] M [ 1 1 ] τ 0 τ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ζ 0 . . . . . . ζ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M [ 1 1 ] . . M [ 1 2 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 0 = . P 1 = . . . . . . . . . τ 1 . M [ 1 0 ] τ 2 . M [ 1 1 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M [ 1 2 ] . . M [ 1 0 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ζ 0 . . ζ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . τ 2 . . . . τ 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M [ 1 0 ] M [ 1 1 ] M [ 1 2 ] τ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ζ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M [ 1 0 ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P 2 = . . . . . τ 0 . M [ 1 2 ] . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M [ 1 1 ] . . . . . . . . . . . . . . . . . . . . . ζ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . τ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M [ 1 2 ] String and Band Complexes over Certain Algebra of Dihedral Type J.A. Vélez-Marulanda

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend