zeta functions of the dirac operator on quantum graphs
play

Zeta Functions of the Dirac Operator on Quantum Graphs Tracy Weyand - PowerPoint PPT Presentation

Zeta Functions of the Dirac Operator on Quantum Graphs Tracy Weyand Baylor University Waco, TX 76798-7328 tracy weyand@baylor.edu Joint work with Jon Harrison and Klaus Kirsten QMath13: Mathematical Results in Quantum Physics October 10,


  1. Zeta Functions of the Dirac Operator on Quantum Graphs Tracy Weyand Baylor University Waco, TX 76798-7328 tracy weyand@baylor.edu Joint work with Jon Harrison and Klaus Kirsten QMath13: Mathematical Results in Quantum Physics October 10, 2016

  2. Metric Graphs Γ = { V , B , L } Quantum Graph: Metric Graph + Differential Operator T. Weyand Zeta Functions

  3. Dirac Operator D = − i α d + m β d x b α and β are 4x4 matrices that satisfy α 2 = β 2 = I and αβ + βα = 0 Vertex Conditions: A ψ + + B ψ − = 0 ψ + = ( ψ 1 1 (0) , ψ 1 2 (0) , . . . , ψ B 2 (0) , ψ 1 1 ( L 1 ) , ψ 1 2 ( L 1 ) , . . . , ψ B 1 ( L B ) , ψ B 2 ( L B )) T ψ − = ( − ψ 1 4 (0) , ψ 1 3 (0) , ψ 1 4 ( L 1 ) , − ψ 1 3 (0) , . . . , ψ B 3 ( L 1 ) , . . . , ψ B 4 ( L B ) , − ψ B 3 ( L B )) T The operator is self-adjoint if and only if A and B are 4 B x 4 B matrices that satisfy rank( A , B ) = 4 B and AB † = BA † . [1] J. Bolte and J. M. Harrison, Spectral statistics for the Dirac operator on graphs, J. Phys. A: Math. Gen. 36:2747 (2003). T. Weyand Zeta Functions

  4. Solutions D = − i α d + m β d x b � 0 � � I � σ 2 0 α = β = σ 2 0 0 − I Solutions to D ψ k = E ( k ) ψ k are of the form         1 0 1 0 0 1 0 1 ψ b ( x b ) = µ b    e i kx b + µ b    e i kx b + ˆ µ b    e − i kx b + ˆ µ b    e − i kx b α     α     0 β − i γ ( k ) 0 β i γ ( k )     i γ ( k ) 0 − i γ ( k ) 0 where γ ( k ) := E ( k ) − m � k 2 + m 2 E ( k ) := k T. Weyand Zeta Functions

  5. Solutions Solutions to D ψ k = E ( k ) ψ k are of the form         1 0 1 0 0 1 0 1 ψ b ( x b ) = µ b  e i kx b + µ b  e i kx b + ˆ µ b  e − i kx b + ˆ µ b  e − i kx b         α   β   α   β   0 − i γ ( k ) 0 i γ ( k )     i γ ( k ) 0 − i γ ( k ) 0 where γ ( k ) := E ( k ) − m � k 2 + m 2 E ( k ) := k Solutions to D ψ k = − E ( k ) ψ k are of the form         i γ ( k ) 0 − i γ ( k ) 0 0 − i γ ( k ) 0 i γ ( k )  e i kx b + µ b  e i kx b + ˆ  e − i kx b + ˆ ψ b ( x b ) = µ b     µ b   µ b   e − i kx b  α   β   α   β   0 1 0 1     1 0 1 0 T. Weyand Zeta Functions

  6. Secular Equation For positive solutions: � cot kL � − csc kL �� det A + γ ( k ) B = 0 − csc kL cot kL For negative solutions: � cot kL � �� − csc kL det γ ( k ) A − B = 0 − csc kL cot kL T. Weyand Zeta Functions

  7. Spectral Zeta Function Given the set of roots { . . . < k − 2 < k − 1 < k 1 < k 2 < . . . } of the secular equation, the spectral zeta function is defined as ∞ ′ E ( k j ) − s � ζ ( s ) = 2 j = −∞ ∞ ′ k − s � = 2 j j = −∞ in the massless case. T. Weyand Zeta Functions

  8. Rose Graph T. Weyand Zeta Functions

  9. Vertex Conditions u b o ✈ b (0) = u b t ✈ b ( L b ) = η for all bonds b B B � � u b o ✇ b (0) = u b t ✇ b ( L b ) b =1 b =1 where � ψ b � − ψ b � � 1 ( x b ) 4 ( x b ) ✈ b ( x b ) = ✇ b ( x b ) = and ψ b ψ b 2 ( x b ) 3 ( x b ) Secular Equation: B cos θ b − cos kL b where cos θ b = 1 � t ) − 1 ) 2 tr ( u b o ( u b = 0 sin kL b b =1 T. Weyand Zeta Functions

  10. Spectral Zeta Function B cos θ b − cos zL b � f ( z ) = z sin zL b b =1 ∞ ′ k − s � ζ ( s ) = 2 j j = −∞ z − s f ′ ( z ) = 1 � f ( z ) d z i π C = 1 � z − s d d z log f ( z ) d z i π C where C is any contour that encloses the zeros of f (while avoiding its poles). [2] J. Harrison and K. Kirsten, Zeta functions of quantum graphs, J. Phys. A: Math. Theor. 44 (2011). T. Weyand Zeta Functions

  11. Contours i) ii) α α Contour C Contour C ′ The shaded circles are the zeros of f and the empty circles are the poles. T. Weyand Zeta Functions

  12. Spectral Zeta Function – Rose Graph ζ ( s ) = ζ p ( s ) + ζ l ( s ) + ζ b ( s ) B � − 1 ∞ � − s � � − s � n π � n π � � � ζ p ( s ) = 2 + L b L b n = −∞ n =1 b =1 � π B � − s = 2( e − i π s + 1) ζ R ( s ) � L b b =1 ζ l ( s ) = 0 if Re( s ) > 0 T. Weyand Zeta Functions

  13. Spectral Zeta Function – Rose Graph � ∞ ζ b ( s ) = e i ( π − α ) s 2 sin π s u − s d d u log f ( ue i α ) du π 0 This converges for 0 < Re( s ) < 2. � ∞ ζ b ( s ) = e i ( π − α ) s 2 sin π s u − s d � ue i α ˆ � d u log f ( u ) du π 0 B cos θ b − cos L b e i α u ˆ � f ( u ) = sin L b e i α u b =1 T. Weyand Zeta Functions

  14. Spectral Zeta Function – Rose Graph Theorem �� 1 ζ ( s ) = e i ( π − α ) s 2 sin s π d u + 1 u − s d � ue i α ˆ � d u log f ( u ) π s 0 � π � ∞ B � − s u − s d � + 2( e − i π s + 1) ζ R ( s ) d u log ˆ � + f ( u ) d u L b 1 b =1 where Re( s ) < 2 and B cos θ b − cos L b e i α u ˆ � f ( u ) = . sin L b e i α u b =1 T. Weyand Zeta Functions

  15. Spectral Determinant – Rose Graph ∞ ′ k 2 det ′ ( D ) = � j j = −∞ = exp( − ζ ′ (0)) � B � 2 B � 2 = (2 π ) 2 B ( − 1) B +1 � L b cos θ b − 1 � � B 2 L b π b =1 b =1 T. Weyand Zeta Functions

  16. Spectral Zeta Function – General Graph Without Mass Theorem �� 1 ζ ( s ) = e i ( π − α ) s 2 sin s π d u + 4 B − 1 u − s d � ( ue i α ) 4 B − 1 ˆ � d u log f ( u ) π s 0 � π � ∞ B � − s u − s d � + 2( e − i π s + 1) ζ R ( s ) d u log ˆ � + f ( u ) d u L b 1 b =1 where Re( s ) < M and � cot ue i α L − csc ue i α L � �� ˆ f ( u ) = det A + B . − csc ue i α L cot ue i α L T. Weyand Zeta Functions

  17. Spectral Determinant – General Graph Without Mass B c 02 ( − 1) B � det ′ ( D ) = (2 L b ) 2 det( A − i B ) 2 b =1 c 0 = f (0) � = 0 T. Weyand Zeta Functions

  18. Spectral Zeta Function – General Graph With Mass Given the set of roots { k 1 , k 2 , . . . } of the positive energy secular equation and the set of roots { ˜ k 1 , ˜ k 2 , . . . } to the negative energy secular equation, the spectral zeta function is defined as ∞ ∞ � − s ′ E ( k j ) − s + 2 ′ � � � − E ( ˜ ζ ( s ) = 2 k j ) j =1 j =1 ∞ ∞ � − s � − s � � 2 + m 2 �� � � ˜ k 2 j + m 2 = 2 + 2 − k j j =1 j =1 = ζ + ( s ) + ζ − ( s ) . T. Weyand Zeta Functions

  19. General Graph With Mass Positive Eigenvalues: � cot zL � − csc zL �� f ( z ) = det A + γ ( z ) B − csc zL cot zL ζ + ( s ) = 1 � ( z 2 + m 2 ) − s / 2 d d z log f ( z ) d z i π C Negative Eigenvalues: � cot zL � �� − csc zL g ( z ) = det γ ( z ) A − B − csc zL cot zL ζ − ( s ) = ( − 1) − s � ( z 2 + m 2 ) − s / 2 d d z log g ( z ) d z i π C T. Weyand Zeta Functions

  20. Contour i) ii) i m i m α α − i m − i m Contour C Contour C ′ The shaded circles are the zeros of f / g and the empty circles are the poles. T. Weyand Zeta Functions

  21. Spectral Zeta Function – General Graph With Mass � − s / 2 B ∞ �� n π � 2 � � ζ + + m 2 p ( s ) = 2 L b n =1 b =1 � π B � � 2 � � − s � mL b s � = 2 E 2 , π L b b =1 � � ∞ b ( s ) = 2 � π s ( t 2 − m 2 ) − s / 2 d ζ + π sin d t f ( i t ) d t 2 m which converges for − 1 < Re( s ) < 1. T. Weyand Zeta Functions

  22. Spectral Zeta Function – General Graph With Mass Theorem � π B � − s � � 2 � s � mL b � ζ ( s ) = 2(1 + ( − 1) − s ) 2 , E π L b b =1 � �� ∞ + 2 � π s ( t 2 − m 2 ) − s / 2 d d t log ˆ π sin f ( t ) d t 2 m � ∞ � ( t 2 − m 2 ) − s / 2 d +( − 1) − s d t log ˆ g ( t ) d t m where − 1 < Re( s ) < 1 and � coth tL � �� − csch tL ˆ f ( t ) = det A + ˆ γ ( t ) B − csch tL coth tL � � coth tL − csch tL �� g ( t ) = det ˆ γ ( t ) A − B ˆ , and − csch tL coth tL √ t 2 − m 2 + i m ˆ γ ( t ) = . t T. Weyand Zeta Functions

  23. Summary We found a formulation of the spectral zeta function of the Dirac operator using a contour integral technique. In the case of zero mass, we analytically continued our expression to a domain including s = 0 and calculated the zeta-regularized spectral determinant. We did this first for a rose graph without mass, and then for a general graph with and without mass. T. Weyand Zeta Functions

  24. References [1] J. Bolte and J. M. Harrison, Spectral statistics for the Dirac operator on graphs, J. Phys. A: Math. Gen. 36(11):2747-2769 (2003). [2] J. Harrison and K. Kirsten, Zeta functions of quantum graphs, J. Phys. A: Math. Theor. 44(33):235301, 29 (2011). [3] J. Harrison, T. Weyand, and K. Kirsten, Zeta functions of the Dirac Operator on quantum graphs, J. Math. Phys. 57(10):102301, 17 (2016). T. Weyand Zeta Functions

  25. T. Weyand Zeta Functions

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend