a positivity conjecture related to the riemann zeta
play

A positivity conjecture related to the Riemann zeta function Thomas - PowerPoint PPT Presentation

A positivity conjecture related to the Riemann zeta function Thomas Ransford Universit e Laval, Quebec City, Canada New Developments in Complex Analysis and Function Theory University of Crete, July 2018 Collaborators Hugues Bellemare


  1. A positivity conjecture related to the Riemann zeta function Thomas Ransford Universit´ e Laval, Quebec City, Canada New Developments in Complex Analysis and Function Theory University of Crete, July 2018

  2. Collaborators Hugues Bellemare Yves Langlois Article to appear in the American Mathematical Monthly .

  3. The functions f k For each integer k ≥ 2, define f k : (0 , 1) → R by � 1 f k ( x ) := 1 � 1 � � − . k x kx

  4. The functions f k For each integer k ≥ 2, define f k : (0 , 1) → R by � 1 f k ( x ) := 1 � 1 � � − . k x kx Graph of f 5 ( x )

  5. A least-squares problem For g : (0 , 1) → C , we write �� 1 � 1 / 2 | g ( x ) | 2 dx � g � := . 0 Set n � � � d n := min � 1 − λ k f k � . � � λ 2 ,...,λ n k =2 Does d n → 0 as n → ∞ ?

  6. A least-squares problem For g : (0 , 1) → C , we write �� 1 � 1 / 2 | g ( x ) | 2 dx � g � := . 0 Set n � � � d n := min � 1 − λ k f k � . � � λ 2 ,...,λ n k =2 Does d n → 0 as n → ∞ ? Theorem (Nyman 1950, B´ aez-Duarte 2002) d n → 0 ⇐ ⇒ RH

  7. The Riemann hypothesis Euler (1748) : For s > 1, 1 1 � � 1 − p − s = n s . p n ≥ 1

  8. The Riemann hypothesis Euler (1748) : For s > 1, 1 1 � � 1 − p − s = n s . p n ≥ 1 Riemann (1859) : For s complex, Re s > 1, � 1 � 1 1 � 1 s � 1 � x s − 1 dx = � x s − 1 dx . � ζ ( s ) := n s = s s − 1 − s x x 0 0 n ≥ 1

  9. The Riemann hypothesis Euler (1748) : For s > 1, 1 1 � � 1 − p − s = n s . p n ≥ 1 Riemann (1859) : For s complex, Re s > 1, � 1 � 1 1 � 1 s � 1 � x s − 1 dx = � x s − 1 dx . � ζ ( s ) := n s = s s − 1 − s x x 0 0 n ≥ 1 Riemann hypothesis ζ ( s ) � = 0 for all s with Re s > 1 / 2.

  10. Proof that d n → 0 ⇒ RH A simple calculation shows that, if Re s > 0, then � 1 f k ( x ) x s − 1 dx = ζ ( s ) � 1 k − 1 � . s k s 0

  11. Proof that d n → 0 ⇒ RH A simple calculation shows that, if Re s > 0, then � 1 f k ( x ) x s − 1 dx = ζ ( s ) � 1 k − 1 � . s k s 0 Suppose that ζ ( s 0 ) = 0, where Re s 0 > 1 / 2. Then � 1 f k ( x ) x s 0 − 1 dx = 0 ( k = 2 , 3 , . . . ) . 0

  12. Proof that d n → 0 ⇒ RH A simple calculation shows that, if Re s > 0, then � 1 f k ( x ) x s − 1 dx = ζ ( s ) � 1 k − 1 � . s k s 0 Suppose that ζ ( s 0 ) = 0, where Re s 0 > 1 / 2. Then � 1 f k ( x ) x s 0 − 1 dx = 0 ( k = 2 , 3 , . . . ) . 0 Thus, for all λ 2 , . . . , λ n , � 1 � 1 n x s 0 − 1 dx = 1 � � x s 0 − 1 dx = � 1 − λ k f k ( x ) . s 0 0 0 k =2

  13. Proof that d n → 0 ⇒ RH A simple calculation shows that, if Re s > 0, then � 1 f k ( x ) x s − 1 dx = ζ ( s ) � 1 k − 1 � . s k s 0 Suppose that ζ ( s 0 ) = 0, where Re s 0 > 1 / 2. Then � 1 f k ( x ) x s 0 − 1 dx = 0 ( k = 2 , 3 , . . . ) . 0 Thus, for all λ 2 , . . . , λ n , � 1 � 1 n x s 0 − 1 dx = 1 � � x s 0 − 1 dx = � 1 − λ k f k ( x ) . s 0 0 0 k =2 But also, by Cauchy–Schwarz, � 1 n n � x s 0 − 1 dx � � � � � � � � � x s 0 − 1 � . 1 − λ k f k ( x ) � ≤ � 1 − λ k f k � � � � � 0 k =2 k =2

  14. Proof that d n → 0 ⇒ RH A simple calculation shows that, if Re s > 0, then � 1 f k ( x ) x s − 1 dx = ζ ( s ) � 1 k − 1 � . s k s 0 Suppose that ζ ( s 0 ) = 0, where Re s 0 > 1 / 2. Then � 1 f k ( x ) x s 0 − 1 dx = 0 ( k = 2 , 3 , . . . ) . 0 Thus, for all λ 2 , . . . , λ n , � 1 � 1 n x s 0 − 1 dx = 1 � � x s 0 − 1 dx = � 1 − λ k f k ( x ) . s 0 0 0 k =2 But also, by Cauchy–Schwarz, � 1 n n � x s 0 − 1 dx � � � � � � � � � x s 0 − 1 � . 1 − λ k f k ( x ) � ≤ � 1 − λ k f k � � � � � 0 k =2 k =2 Hence d n ≥ 1 / | s 0 |� x s 0 − 1 � for all n . In particular d n �→ 0.

  15. Behavior of ( d n ) (B´ aez-Duarte et al, 2000)

  16. Behavior of ( d n ) (Ba´ ez-Duarte et al, 2000)

  17. Behavior of the sequence ( d n ) Numerical calculations suggest that d n ≈ 0 . 21 / √ log n . Conjecture (B´ aez-Duarte, Balazard, Landreau, Saias (2000)) � d n ∼ C 0 / log n where � C 0 := 2 + γ − log(4 π ) = 0 . 2149 . . . Theorem (B´ aez-Duarte, Balazard, Landreau, Saias (2000)) There exists C > 0 such that d n ≥ C / √ log n for all n.

  18. How to compute d n ? � 1 Notation : � g , h � := 0 g ( x ) h ( x ) dx .

  19. How to compute d n ? � 1 Notation : � g , h � := 0 g ( x ) h ( x ) dx . Gram–Schmidt : There is a unique sequence of functions e 2 , e 3 , . . . on (0 , 1) such that : � e j , e k � = δ jk ∀ j , k , span { e 2 , . . . , e n } = span { f 2 , . . . , f n } ∀ n , � e k , f k � > 0 ∀ k .

  20. How to compute d n ? � 1 Notation : � g , h � := 0 g ( x ) h ( x ) dx . Gram–Schmidt : There is a unique sequence of functions e 2 , e 3 , . . . on (0 , 1) such that : � e j , e k � = δ jk ∀ j , k , span { e 2 , . . . , e n } = span { f 2 , . . . , f n } ∀ n , � e k , f k � > 0 ∀ k . A calculation shows that, for all choices of scalars λ 2 , . . . , λ n , n n n 2 � � |� 1 , e k �| 2 + � � � | λ k − � 1 , e k �| 2 . � 1 − λ k e k = 1 − � � � k =2 k =2 k =2

  21. How to compute d n ? � 1 Notation : � g , h � := 0 g ( x ) h ( x ) dx . Gram–Schmidt : There is a unique sequence of functions e 2 , e 3 , . . . on (0 , 1) such that : � e j , e k � = δ jk ∀ j , k , span { e 2 , . . . , e n } = span { f 2 , . . . , f n } ∀ n , � e k , f k � > 0 ∀ k . A calculation shows that, for all choices of scalars λ 2 , . . . , λ n , n n n 2 � � |� 1 , e k �| 2 + � � � | λ k − � 1 , e k �| 2 . � 1 − λ k e k = 1 − � � � k =2 k =2 k =2 Distance formula n � d 2 |� 1 , e k �| 2 . n = 1 − k =2

  22. How to compute � 1 , e k � in practice ? Four steps : Compute � 1 , f k � . This is easy since � 1 ζ ( s ) � 1 k − 1 = log k f k ( x ) x s − 1 dx = lim � � 1 , f k � = lim . s k s k s → 1 s → 1 0

  23. How to compute � 1 , e k � in practice ? Four steps : Compute � 1 , f k � . This is easy since � 1 ζ ( s ) � 1 k − 1 = log k f k ( x ) x s − 1 dx = lim � � 1 , f k � = lim . s k s k s → 1 s → 1 0 Compute � f j , f k � (see next slide).

  24. How to compute � 1 , e k � in practice ? Four steps : Compute � 1 , f k � . This is easy since � 1 ζ ( s ) � 1 k − 1 = log k f k ( x ) x s − 1 dx = lim � � 1 , f k � = lim . s k s k s → 1 s → 1 0 Compute � f j , f k � (see next slide). Deduce � e j , f k � (see next slide).

  25. How to compute � 1 , e k � in practice ? Four steps : Compute � 1 , f k � . This is easy since � 1 ζ ( s ) � 1 k − 1 = log k f k ( x ) x s − 1 dx = lim � � 1 , f k � = lim . s k s k s → 1 s → 1 0 Compute � f j , f k � (see next slide). Deduce � e j , f k � (see next slide). Compute � 1 , e j � by solving the triangular linear system n � � 1 , e j �� e j , f k � = � 1 , f k � ( k = 2 , . . . , n ) . j =2

  26. The scalar products � f j , f k � and � e j , f k � To compute � f j , f k � , we can use Theorem (Vasyunin, 1996) Let j , k ≥ 2 , and set ω := exp(2 π i / jk ) . Then jk − 1 jk − 1 � f j , f k � = 1 � q �� q � ω − qr ( ω − r − 1) log(1 − ω r ) , � � jk j k q =1 r =1

  27. The scalar products � f j , f k � and � e j , f k � To compute � f j , f k � , we can use Theorem (Vasyunin, 1996) Let j , k ≥ 2 , and set ω := exp(2 π i / jk ) . Then jk − 1 jk − 1 � f j , f k � = 1 � q �� q � ω − qr ( ω − r − 1) log(1 − ω r ) , � � jk j k q =1 r =1 And to obtain � e j , f k � we use Proposition Let P jk := � f j , f k � and L kj := � f k , e j � . Then L is a lower-triangular matrix and P = LL t (Cholesky decomposition).

  28. The matrix P jk := � f j , f k � for n = 9 2 3 4 5 6 7 8 9 2 0.1733 0.1063 0.1184 0.0918 0.0931 0.0784 0.0778 0.0683 3 0.1063 0.1770 0.1220 0.1118 0.1178 0.0976 0.0908 0.0914 4 0.1184 0.1220 0.1618 0.1194 0.1103 0.1023 0.1060 0.0912 5 0.0918 0.1118 0.1194 0.1456 0.1125 0.1019 0.0956 0.0918 6 0.0931 0.1178 0.1103 0.1125 0.1313 0.1049 0.0957 0.0909 7 0.0784 0.0976 0.1023 0.1019 0.1049 0.1192 0.0976 0.0889 8 0.0778 0.0908 0.1060 0.0956 0.0957 0.0976 0.1089 0.0910 9 0.0683 0.0914 0.0912 0.0918 0.0909 0.0889 0.0910 0.1002

  29. The matrix L kj := � f k , e j � for n = 9 2 3 4 5 6 7 8 9 2 0.4163 0 0 0 0 0 0 0 3 0.2554 0.3343 0 0 0 0 0 0 4 0.2845 0.1475 0.2430 0 0 0 0 0 5 0.2205 0.1659 0.1325 0.2277 0 0 0 0 6 0.2237 0.1814 0.0819 0.0976 0.1792 0 0 0 7 0.1883 0.1480 0.1107 0.0929 0.0991 0.1764 0 0 8 0.1868 0.1288 0.1395 0.0638 0.0721 0.0841 0.1471 0 9 0.1641 0.1479 0.0934 0.0822 0.0651 0.0664 0.0863 0.1409

  30. Is � e j , f k � always positive ? Here is what we have been able to establish.

  31. Is � e j , f k � always positive ? Here is what we have been able to establish. Numerical computation � e j , f k � > 0 for 2 ≤ j ≤ k ≤ 50000 .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend