yonsei university introduction
play

YONSEI UNIVERSITY Introduction Lightwave Modulation : Process - PowerPoint PPT Presentation

Special Topics in Optical Engineering C onverged 2015-04-03 Paper Review A dvanced N etwork Soo-Min Kang Tetsuya Kawanishi , Takahide Sakamoto , and Masayuki Izutsu , IEEE YONSEI UNIVERSITY Introduction Lightwave Modulation :


  1. Special Topics in Optical Engineering Ⅱ C onverged 2015-04-03 Paper Review A dvanced N etwork Soo-Min Kang Tetsuya Kawanishi , Takahide Sakamoto , and Masayuki Izutsu , IEEE YONSEI UNIVERSITY

  2. Introduction Lightwave Modulation   : Process of varying properties( A,f, 𝝌 ) of periodic waveform to match the transmission channel Data Signal Channel Optical Modulator High-order PM MZM SSB, FSK Sideband Generation YONSEI 1/11 UNIVERSITY

  3. 1. PM Principle : EO(Electro → Optic) effect   Electric Voltage → n ↕→ phase of lightwave ↕  Using EO material : Litium niobate(LN), litumn tantalite(LT), gallium arsenide(GaAs) Fig.1. Optical Phase Modulator Optical Output(R)  ,   If f(t) is a sinusoidal signal, 0 Fig.2. 1 st kind of Bessel function 𝐵 𝑀𝑋 : optical transmittance • • V(t) : electric voltage on the electrode 𝐵 𝑆𝐺 : index for optical phase deviation induced by electric signal 𝑔 • • 0 : optical carrier 𝐾 𝑜 𝐵 : 1 st kind n-th order Bessel function • • K : coupling coefficient between E-&O-signal YONSEI 2/11 UNIVERSITY

  4. 2. MZM (1) Principle : MZ Intensity Modulator(EO effect)   A pair of E-signal → 2-PM, balanced push-pull operation A = 𝒉 𝒖 /2  3-type • A : : induced phase of modulator A = - 𝒉 𝒖 /2 𝑕 𝑢 : optical phase difference between two arms of MZM • • C – axis : directed at x,z axis in x,z cut LN substrate Fig.3. MZM X-cut MZM Z-cut MZM Z-cut dual-electrode MZM Fig.4. Cross sections of MZM for push-pull operation  Output intensity ( lRl )  ON/OFF switching by changing V(t)  = Full bias On = Null bias Off Fig.5. Intensity Modulation using MZM Cf) MZM curves YONSEI 3/11 UNIVERSITY

  5. 2. MZM (2) In practical, Ref.[31]  • ER : Extinction Ratio  Problem : Imbalance in 2-arms, High-order radiative wave → ER ↓  Solution : Active trimmer ㅡ w/ trimmer ㅡ w/o ER : 40dB Fig.6. Degradation of ER increases • Bias control with 3 – Electrodes • Trimmer compensates problem → ER ↑ Fig.7. High ER Intensity modulator using active trimmers Fig8. After trimmer  Output  Application : DSB-SC Modulation  Imperfection of MZM fabrication, electric circuits problem  Add sinusoidal signals to Electrode C → Null-point at C → generation DSB(USB & LSB) components → Use Trimmer 𝒈 𝟏 + 𝒈 𝒏 𝒈 𝟏 + 𝒈 𝒏 Two-tone lightwave generation 𝒈 𝟏 𝒈 𝟏 - 𝒈 𝒏 𝒈 𝟏 𝒈 𝟏 + 𝒈 𝒏 • DSB-SC : Double-sideband Suppressed Carrier • ∅ 𝐶 : DC bias 𝑔 • 0 : Input optical frequency 𝑔 • 𝑛 : Input RF signal frequency Fig.9. DSB-SC signal w,w/o trimmer Fig.10-11. w/, w/o trimmer • USB(Upper sideband), LSB(Lower sideband) YONSEI 4/11 UNIVERSITY

  6. 3. SSB, FSK Modulator (1)  SSB Output SSB Principle Ref.[13,14]   2-MZM, RF A,B , DC A,B,C   Phase difference of RF signal ↔ Lightwave = ① 90 ° : USB ② - 90 ° : LSB Fig.13. Optical SSB Modulator  RF A , RF B : traveling wave electrodes for high speed operation  DCc : main MZ has an electrode for dc-bias +𝟐 +𝟐 −𝟐 −𝟐 MZ A P Path 1+3  Key 180 ° RF A Path 1+3 • Path 1 : 𝐝𝐩𝐭(θ + 𝟏 ) / 3 : 𝒅𝒑𝒕(θ + π ) P 90 ° +𝟐 Q −𝟐 MZ B • Path 2 : 𝒅𝒑𝒕(θ + π 𝟑 ) / 4 : 𝒅𝒑𝒕(θ + 3π +𝟐 −𝟐 DCc Q 𝟑 ) Path 2+4 Path 2+4 180 ° RF B Q : 90 ° Delay(assumption) • Path 1,2,3,4 : null-bias → SC • Amplitude of LSB / USB / 1 + 𝑘𝑓 𝑘∅ 𝐺𝑇𝐿 −1 + 𝑘𝑓 𝑘∅ 𝐺𝑇𝐿 2 2 • ∅ 𝐺𝑇𝐿 : Induced phase difference at DCc YONSEI 5/11 UNIVERSITY

  7. Cf) SSB using OHT SSB using Optical Hilbert Transform  Ref. Ze Li, Photonics Technology Letters, 1) Make DSB by using 1-MZM Optical Single-Sideband Modulation Using a Fiber-Bragg-Grating-Based Optical Hilbert Transformer, 2011. 𝒈 𝒅 - 𝒈 𝒏 𝒈 𝒅 𝒈 𝒅 + 𝒈 𝒏 2) Power splitter 3) Up-line : pass trough 4) Down-line : Make OPS(Optical Phase-shifter) + OFHT(Optical Fractional Hilbert Transformer) A) 𝜾 = 90 ° : USB B) 𝜾 = -90 ° : LSB + phase - phase YONSEI UNIVERSITY

  8. 3. SSB, FSK Modulator (2) FSK Principle Ref.[9,10]  FSK Modulator Ref.[11,13]   FSK Concept  Principle Fig.14. Optical FSK Modulator  Why not DCc but RFc ? : RFc is faster than DCc because DCc’s • RF A , RF B : null-point, dc-bias is controlled by switching time is limited by electrode RF A,B response in high speed operation • RFc : make 90 ° phase difference → SSB YONSEI 6/11 UNIVERSITY

  9. 3. SSB, FSK Modulator (3) Application (1) : FSK/SSB Modulator(SSB-SC) & 40GHz Optical frequency shift   Experiment Ref.[9,13,14,32] Fig.17. Z-cut dual-electrode FSK/SSB Modulator Fig.19. FSK Modulation setup using z-cut FSK/SSB Modulator Modulator 3dB BW : 30GHz • Insertion loss : 4.2dB •  Suppress input optical carrier and make SSB-SC Modulation Frequency : 40GHz •  Convertible into USB or LSB by changing bias at MZc NRZ PRBS 40Gbps data signal to C1 • 𝒈 𝟏 - 𝒈 𝒏 𝒈 𝟏 + 𝒈 𝒏 80GHz 𝒈 𝟏 Fig.20. Optical spectra of z-cut Fig.21. Overall band specra Fig.22-23. Demodulated FSK Signal & Eye pattern FSK/SSB Modulator YONSEI 7/11 UNIVERSITY

  10. 3. SSB, FSK Modulator (4) Application (2) : 80Gbps DQPSK Modulation Ref.[4,19,20,32]   DQPSK Concept Optical DQPSK Signal( I ) Electrical Binary NRZ Data Stream( I ) I 1-bit delay Fig.24. DQPSK using z-cut FSK/SSB Modulator • Optical 3dB BW of each electrode : 27GHz Insertion loss : 5.1dB • Modulation Frequency : 40GHz Q • • NRZ PRBS 40Gbps data signal (10Gbps for each channel x 4) Electrical Binary NRZ Data Stream( Q ) Optical DQPSK Signal( Q )  1- bit delay’s constructive/destructive ports were connected to balanced PDs.  80Gbps transmission success ∆𝜒 : differential optical phase of 1-bit • interferometer B2B : Back – to - Back • Fig.25. Spectrum of Fig.26-27. Eye diagram of DQPSK signal and Optical B2B BER curves 80Gbps optical DQPSK YONSEI 8/11 UNIVERSITY

  11. 4. High-order Sideband Generation (1)  High-order sideband Ref.[19,20] 4 𝒈 𝒏 Using harmonics : 𝒈 𝟏 + 𝐎𝒈 𝒏  … … • N : N-th order of harmonics 𝒈 𝟏 - 2 𝒈 𝒏 𝒈 𝟏 - 𝒈 𝒏 𝒈 𝟏 𝒈 𝟏 + 𝒈 𝒏 𝒈 𝟏 + 2 𝒈 𝒏 𝒈 𝟏 + 𝐎𝒈 𝒏 𝒈 𝟏 - 𝐎𝒈 𝒏  Why High-order? Upper limit of fm depends on transmission loss in travelling wave electrodes in MZM  fm < 50GHz → use harmonics of fm which can make higher frequency components   Application (1) : QDSB-SC • QDSB-SC : Quadruple DSB-SC 𝑔𝑛 : modulating frequency, 10.5GHz •  Carrier suppression ratio:45.8dB  Spurious suppression ratio : 41.8dB  Make 42GHz millimeter wave Fig.28. QDSB Modulation Cf) Experiment setup Ref.[20]  Advantage of QDSB-SC Phase difference • More Robust in Vibration, between two-modulator Temperature than mode locking , LO-mixing, etc.  Disadvantages of QDSB-SC • Small modulation efficiency (use of nonlinearity of Modulator) Fig.29. Optical spectrum of QDSB-SC Fig.30. RF spectrum of QDSB-SC YONSEI 9/11 UNIVERSITY

  12. 4. High-order Sideband Generation (2)  Application (2) : ROM Ref.[21-24,34-36] Reciprocate : 왕복운동을 하다 • 𝑆𝐺 signal frequency = 39.06GHz  Reciprocating Optical Modulation  Recycling sideband components → High power(overcome QDSB- SC’s small signal)  2-FBG + 1-PM 𝑔 𝑔 0 0 FBG FBG PM dual port 𝑔 𝑔 0 𝑔 𝑔 𝑔 0 0 −1 1 Fig.31. Schematic of ROM 𝑔 1 𝑔 𝑔 0 𝑔 2 1 𝑔 0 𝑔 1 𝑔 2 𝑔 1 𝑔 𝑔 3 2 𝑔 𝑔 1 𝑔 2 𝑔 1 𝑔 2 𝑔 0 𝑔 3 𝑔 3 4 Cf) Principle of harmonic generation 𝑔 1 𝑔 𝑔 𝑔 0 𝑔 1 𝑔 2 𝑔 𝑔 𝑔 𝑔 𝑔 𝑔 0 𝑔 1 𝑔 2 𝑔 𝑔 2 3 4 5 3 4 3 5 4  Can make upto 8 th order LSB 312.48GHz  Spectral components in ROM are stationary phase- locked to each other without PLL Fig.33. Output lightwave spectrum YONSEI 10/11 UNIVERSITY

  13. Conclusion Summary   IM, OOK Intensity  EO Effect → PM, MZM Phase  Application : DSB-SC Modulation  SSB, FSK Frequency  Application : FSK/SSB Modulation (=SSB-SC) shift  High-order Sideband Generation High-order  Application : QDSB-SC Modulation, ROM YONSEI 11/11 UNIVERSITY

  14. Special Topics in Optical Engineering Ⅱ C onverged 2015-04-03 Paper Review A dvanced N etwork Soo-Min Kang roemee817@naver.com YONSEI UNIVERSITY

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend