quark sector cp violations and beyond
play

Quark-sector CP violations and beyond Youngjoon Kwon Yonsei - PowerPoint PPT Presentation

Quark-sector CP violations and beyond Youngjoon Kwon Yonsei University 1st T2HKK Workshop @ SNU, Nov. 21-22, 2016 Outline Introduction & Motivation CP violations in the quark sector Outlook 2 The three frontiers Flavor Physics 5 3


  1. Quark-sector CP violations and beyond Youngjoon Kwon Yonsei University 1st T2HKK Workshop @ SNU, Nov. 21-22, 2016

  2. Outline Introduction & Motivation CP violations in the quark sector Outlook 2

  3. The three frontiers Flavor Physics 5 3

  4. Energy vs. Intensity Frontiers Intensity Frontier is M NP [ TeV ] complementary to the Energy SuperKEKB 10 2 Frontier NP mass scale If LHC finds NP 10 KEKB * precision flavor input is essential to further clarify those discoveries LHC 1 Even if no new NP is found Tevatron * high-statistics flavor sector -1 10 2 measurements (on b , c , and τ ) can 1 10 10 (g NP /g) 2 provide beyond-TeV-scale probe for favor-violating coupling NP 4

  5. Flavor Physics Grand Slam 5

  6. Why interested in CP violations? Without CPV, we cannot exist. 1964 Cronin, Fitch, et al. • Discovery of CPV by observing 1967 A. Sakharov, 3 conditions • baryon # non-conservation • C & CP violation • not in thermal equilibrium 6

  7. 1/500 in 0.17 βγ 7

  8. CPV in the Standard Model Kobayashi-Maskawa mechanism • provides CP violation within SM via quark mixing matrix (“CKM matrix”) in charged-current weak interactions • predicts large (~O(10%)) CP violations in the B 0 mesons • experimental tests of the unitarity of CKM matrix CP violations in the strong sector? 1 µ ν ˜ 16 π 2 F a F µ ν a L = θ Since neutrinos also mix (maximally), CPV in neutrinos is also a possibility; but no experimental signatures yet 8

  9. Three ways for CPV in mixing M → X ℓ + ν ℓ ) − Ŵ ( M → X ℓ − ¯ A SL = Ŵ ( ¯ ν ℓ ) M → X ℓ + ν ℓ ) − Ŵ ( M → X ℓ − ¯ Ŵ ( ¯ ν ℓ ) in decays (“Direct CP violation”) W s t W g V ub via interference between mixing and decay ( t -dependent) f cp f cp B 0 = B 0 B 0 B 0 9

  10. > 5 σ signatures of CPV (1) • Indirect CP violation in K → ππ and K → πℓν decays, and in the K L → π + π − e + e − decay, is given by | ϵ | = (2 . 228 ± 0 . 011) × 10 − 3 . (13 . 1) • Direct CP violation in K → ππ decays is given by R e ( ϵ ′ / ϵ ) = (1 . 65 ± 0 . 26) × 10 − 3 . (13 . 2) • CP violation in the interference of mixing and decay in the tree-dominated b → c ¯ cs transitions, such as B 0 → ψ K 0 , is given by (we use K 0 throughout to denote results that combine K S and K L modes, but use the sign appropriate to K S ): S ψ K 0 = +0 . 691 ± 0 . 017 . (13 . 3) first Belle-BaBar S D ( ∗ ) CP h 0 = +0 . 63 ± 0 . 11 , joint analysis 10

  11. Belle, PRL (2012) 400 350 300 Events / 0.5 ps 250 200 150 100 50 0 0.6 0.4 Asymmetry 0.2 0 -0.2 -0.4 -0.6 -6 -4 -2 0 2 4 6 t (ps) ∆ 2008 11

  12. CKM Unitarity Triangle fit (now) CKM fit (as of 2001) 12

  13. > 5 σ signatures of CPV (2) S φ K 0 = + 0 . 74 +0 . 11 − 0 . 13 , S ψπ 0 = − 0 . 93 ± 0 . 15 , S η ′ K 0 = + 0 . 63 ± 0 . 06 , S D + D − = − 0 . 98 ± 0 . 17 . S f 0 K 0 = + 0 . 69 +0 . 10 − 0 . 12 , S D ∗ + D ∗− = − 0 . 71 ± 0 . 09 . S K + K − K S = + 0 . 68 +0 . 09 − 0 . 10 , 13

  14. ) 400 2 Events / (0.1) (a) Events / (0.0025 GeV/c (c) 3 10 350 300 250 2 10 200 150 100 10 50 Normalised Normalised 2 Residuals 2 Residuals 0 0 -2 -2 5.24 5.25 5.26 5.27 5.28 5.29 5.3 0 0.2 0.4 0.6 0.8 1 2 + M (GeV/c ) L bc K/ π q = +1 Events / (1.5 ps) (a) 300 q = -1 250 200 150 100 50 0 0 B B 0.5 (b) N N + - 0 0 0 B B N N -0.5 -7.5 -5 -2.5 0 2.5 5 7.5 t (ps) ∆ 14

  15. 15

  16. > 5 σ signatures of DCPV • Direct CP violation in the B 0 → K − π + mode is given by A B 0 → K − π + = − 0 . 082 ± 0 . 006 . (13 . 14) • Direct CP violation in B + → D + K + decays ( D + is the CP -even neutral D state) is given by A B + → D + K + = +0 . 195 ± 0 . 027 . (13 . 15) s → K + π − mode is given by • Direct CP violation in the B 0 s → K + π − = +0 . 26 ± 0 . 04 . (13 . 16) A B 0 • Direct CP violation in B + → K + K − π + decays is given by A B + → K + K − π + = − 0 . 118 ± 0 . 022 . (13 . 17) 16

  17. The “K π puzzle” Belle, Nature 452, 20 (2008) a K – p + b K + p – 750 b a u W K + , p + 500 W s, d b s, d K + , p + u u b B + , B 0 g Entries per 2 MeV/ c 2 250 p 0 , p – B + , B 0 u u, d p 0 , p – u, d u, d u, d 0 d c c K − p 0 d K + p 0 300 u, d u b Z p 0 p 0 u, d u W b 200 d, s B + B + d, s p + , K + W p + , K + 100 u u u u 0 5.2 5.25 5.2 5.25 M bc (GeV/ c 2 ) A B 0 → K − π + = − 0 . 082 ± 0 . 006 , A B − → K − π 0 = 0 . 040 ± 0 . 021 from HFAG (2016) 17

  18. CPV in Kaons: � ð K L ! � þ � � Þ = � ð K S ! � þ � � Þ E 7 3 1 7 . 4 ± 5.9 N A 3 1 2 3 . 0 ± 6.5 � ð K L ! � 0 � 0 Þ = � ð K S ! � 0 � 0 Þ ð ! Þ ð N A 4 8 1 4 . 7 ± 2.2 Þ � � � þ� 2 � � � 1 þ 6 Re ð � 0 = � Þ : � � ¼ � � � � K T E V 1 9 . 2 ± 2.1 Þ � � � 00 � � � � Trigger Muon Hodoscope Veto Drift Chambers CA (x10 -4 ) 0 10 20 30 CsI Regenerator 16.6 ± 2.3 N e w W o r l d A v e . 1 6 . 8 ± 1.4 Regenerator Beam Vacuum Beam Beams Mask Anti Photon Vetoes 25 cm Photon Vetoes Analysis Magnet Steel 120 140 160 180 Z = Distance from kaon production target (meters) 18

  19. CPV in Kaons: PRL 101, 191802 (2008) BNL E787/E949 E787/E949 45 This analysis E949-PNN1 7 events observed 40 E787-PNN2 E787-PNN1 Simulation 35 Range (cm) • Not enough events to measure A CP 30 • contribution from intermediate 25 charm quark is not negligible, and 20 constitutes a source of hadronic uncertainty 15 10 High-precision results 50 60 70 80 90 100 110 120 130 140 150 expected from NA62 Energy (MeV) 19

  20. CPV in Kaons: best limit by KEK E391 PHYSICAL REVIEW D 81, 072004 (2010) 0.4 0.35 0.3 (GeV/c) 0.25 0.2 KOTO goal T 0.15 P • to observe 3.5 SM signal in 3 years 0.1 running 0.05 0 200 250 300 350 400 450 500 550 600 Z (cm) vtx W )] 2 A 4 η 2 , B ( K L → π 0 νν ) = κ L [ X ( m 2 t /m 2 a very clean CPV mode to extract a CKM parameter η 20

  21. CPV in charm a d � ∞ � ∞ f = 2 r f sin φ f sin δ f Γ ( D 0 Γ ( D 0 phys ( t ) → f ) dt − phys ( t ) → f ) dt 0 0 a f ≡ � ∞ � ∞ Γ ( D 0 Γ ( D 0 phys ( t ) → f ) dt + phys ( t ) → f ) dt �� � � � � a m = − y q p 0 0 � � � � cos φ D � − � � � � 2 p q � � � f = a d f + a m f + a i f �� � � � � a i = x q p � � � � � + sin φ D no evidence for charm CPV yet � � � � 2 p q � � � direct CPV can be isolated by ∆ a CP ≡ a K + K − − a π + π − = a d K + K − − a d π + π − LHCb, JHEP 1407, 041 (2014) 21

  22. CPV in charm an honorable mention D þ ! K 0 S � þ ¼ ð� 0 : 363 � 0 : 094 � 0 : 067 Þ % . A CP Belle PRL 109, 021601 (2012) measurement supersedes our previous determination • the only evidence for CPV 5 10 0.005 ) 2 in charm sector Events/(1 MeV/c 0 + π • consistent with what’s S 0 K -0.005 → CP + D A expected from CPV in K 0 4 10 -0.01 1.8 1.9 0 2 + -0.015 M(K ) (GeV/c ) π 0 0.5 1 S CMS 5 0 10 ) 2 -0.01 Events/(1 MeV/c FB + D A -0.02 -0.03 4 10 -0.04 1.8 1.9 0 0.5 1 0 2 - M(K ) (GeV/c ) π c.m.s. S |cos | θ + D 22

  23. CPV beyond the quark sector Why beyond? • CPV in quark sector is consistent with KM mechanism • NP contribution of O(0.1) can still be accommodated • But, CPV via KM is far smaller than BAU, by O(10 − 10 ) CP violations in leptons & leptogenesis • many people’s favorite hypothesis for BAU • one of main motivations for T2HKK CP violations via EDM • or does it call for an axion? 23

  24. future prospects for CPV in quarks 24

  25. the next Luminosity Frontier SuperKEKB is the next luminosity frontier 4 25

  26. SuperKEKB SuperKEKB The super B -factory at KEK (2018 start) ● A planned 40-fold increase in luminosity over KEKB (target: 8x10 35 cm -2 s -1 instantaneous, 50ab -1 integrated), due to major upgrades: ○ “Nano-beam” scheme (below) ○ Doubled beam currents ○ (large number of upgrades to RF, magnet, vacuum, etc. systems) ● First turns Feb. 10, 2016! Exciting times! See Y. Onishi, ICHEP highlights, 8/08 3 12:10 26

  27. Belle II Belle II major upgrades Belle II at ICHEP: Detectors : DEPFET: L. Andricek, Poster 8th 18:30 SVD: A. Paladino, Detector 4th 17:00 EMC: Y. Jin, Poster 6th 18:00 iTOP: A. Schwartz, Detector 6th 14:30 iTOP: K. Inami, Poster 6th 18:00 CPU: M. Schram, Computing 4th 12:50 Physics : Prospects: B. Fulsom, Flavor 5th 14:30 Dark: G. Inguglia, BSM 4th 17:40 Bottomonia: K. Miyabayashi, Poster 6th 18:00 5 27

  28. Belle II milestones Phase 1 (Feb. 2016) • beam commissioning + beam background measurements Phase 2 (Dec. 2017) • Detector in place without VXD+PXD Phase 3 (Nov. 2018) • Full physics run 28

  29. 29

  30. Belle II vs. LHCb complementarity (or competition!) at a glance adapted from 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend