xenon1t
play

XENON1T for the XENON collaboration Rafael F. Lang Purdue - PowerPoint PPT Presentation

XENON1T for the XENON collaboration Rafael F. Lang Purdue University rafael@purdue.edu Aspen, January 30, 2013 Key Points sensitivity 1 event/ton/year, 210 -47 cm 2 data taking 2015 at Gran Sasso: approved & funded DAMA CoGeNT


  1. XENON1T for the XENON collaboration Rafael F. Lang Purdue University rafael@purdue.edu Aspen, January 30, 2013

  2. Key Points • sensitivity 1 event/ton/year, 2·10 -47 cm 2 • data taking 2015 at Gran Sasso: approved & funded DAMA CoGeNT CRESST CRESST CDMS Rafael F. Lang, Purdue: XENON1T 2

  3. The XENON Collaboration 50% of capital cost from NSF – thanks! 100 scientists from 16 institutions: University of California Los Angeles Willhelms Universität Münster Rice University Houston J. Gutenberg-Universität Mainz Purdue University Max-Planck-Institut für Kernphysik Columbia University New York Universität Zürich Universidade de Coimbra Laboratori Nazionali del Gran Sasso Subatech Nantes INFN e Università di Bologna NIKHEF Amsterdam Weizman Institute Rehovot Universität Bern Rafael F. Lang, Purdue: XENON1T 3

  4. Key Challenges XENON100 XENON1T • liquid xenon 161 kg ~3500 kg • background 5·10 -3 dru 5·10 -5 dru • krypton/xenon (19 ± 4) ppt <0.5 ppt • radon/xenon ~65 µBq/kg ~1 µBq/kg • electron drift 30 cm 1 m • cathode -16 kV -100 kV • filling-to-search several months 2 months Rafael F. Lang, Purdue: XENON1T 4

  5. Backgrounds Rafael F. Lang, Purdue: XENON1T 5

  6. The Need for a Muon Veto shielding of high-energy n insufficient: requires veto muon-induced neutrons, E>10MeV gammas from rock radioactivity, E<3MeV neutrons from rock radioactivity, E<10MeV Rafael F. Lang, Purdue: XENON1T 6

  7. Water Tank 10m high, Ø 9.6m • • construction start April 1 st • ~5 m 3 /h deionization, radon stripping, particulate removal ICARUS XENON1T Weizmann, LNGS WARP LNGS Hall B Rafael F. Lang, Purdue: XENON1T 7

  8. Water Черенков Muon Veto • 84 high QE 8” Hamamatsu R5912 PMTs • single PE trigger 4-fold coincident within 300ns → reject 99.5% n with m in veto 78% n with m outside Bologna, Mainz, Torino Rafael F. Lang, Purdue: XENON1T 8

  9. Water Черенков Muon Veto • 84 high QE 8” Hamamatsu R5912 PMTs • single PE trigger 4-fold coincident within 300ns m induced n from rock → reject 99.5% n with m in veto 100GeV, 10 -47 cm 2 SI single scatter, TPC 78% n with m outside single scatter, fiducial Bologna, Mainz, Torino • μ -induced n background 0.01 per year: negligible Rafael F. Lang, Purdue: XENON1T 9

  10. Cryostat & TPC • SS 316Ti • cryostat 1.5m high, Ø1.3m Columbia, Nikhef, Rice UCLA, Zürich • HV feedthrough demonstrated with grids up to 110kV Rafael F. Lang, Purdue: XENON1T 10

  11. Materials Screening • gamma-ray screening ~10 μ Bq/kg sensitivity • ICPMS LNGS, Zürich, MPIK, UCLA, Mainz • miniaturized proportional counter • 222 Rn emanation measurement few atom sensitivity • Neutron Activation Analysis Rafael F. Lang, Purdue: XENON1T 11

  12. PMT Arrays • scale up to 3” R11410 • 121+127 PMTs (~XENON100) • quantum efficiency @178nm > 28%, average 32.5% • gain 6·10 6 UCLA, Zürich, MPIK, Columbia • screen individual components Rafael F. Lang, Purdue: XENON1T 12

  13. PMT Arrays • scale up to 3” R11410 • 121+127 PMTs (~XENON100) • quantum efficiency @178nm > 28%, average 32.5% • gain 6·10 6 UCLA, Zürich, MPIK, Columbia • screen individual components • gain stability <2% in liquid xenon Rafael F. Lang, Purdue: XENON1T 13

  14. Cooling • heat load <50W • cooling outside tank: 2 redundant 200W Pulse Tube Refrigerators plus liquid nitrogen Columbia Rafael F. Lang, Purdue: XENON1T 14

  15. Xenon Handling very compact storage (2.7 m x 3.2 m x 3.0 m) 3.6 ton storage capacity 500W available for cooling store both liquid xenon (-108 ° C) or gaseous xenon (65 bar) keep high purity fill and recuperate liquid Subatech Rafael F. Lang, Purdue: XENON1T 15

  16. Xe Gas System • continuously re-circulate and purify • redundant setup • online purity monitoring Münster, Columbia Rafael F. Lang, Purdue: XENON1T 16

  17. Radon in Xenon • Goal: a few μBq /kg from 222 Rn in Xe • avoid and minimize sources of Rn • cryogenic adsorption of Rn on charcoal: slow down Rn sufficiently to decay (t 1/2 = 3.8 d) extensive R&D underway MPIK Rafael F. Lang, Purdue: XENON1T 17

  18. Krypton Removal 85 Kr beta decays (687keV), natural abundance 85 Kr/Kr ~ 10 -11 • target 0.5 ppt nat Kr in Xe (XENON100: (19 ± 4) ppt) • custom designed and build Kr distillation column • throughput 3 kg/h @ 10 4 separation Münster • 3m version built Rafael F. Lang, Purdue: XENON1T 18

  19. Krypton Analysis Rare Gas Mass Spectroscopy RGMS: nat Kr to ppt level atomic trap ATTA: 84 Kr to ppt level get 85 Kr from atmospheric abundance in situ: delayed coincidences branching 0.4% 10.8y MPIK, Columbia 85 Kr 0.4% b g S2 1.0 m s 99.6% Q b =687 keV 514 keV stable 85 Rb Rafael F. Lang, Purdue: XENON1T 19

  20. XENON1T Demonstrator a vertical slice of XENON1T • cooling  >130W to spare • e - lifetime  1 ms in 12 h • purification  • recirculation  Columbia, Rice, UCLA >800kg/day • HV  100kV stable • 1m drift Rafael F. Lang, Purdue: XENON1T 20

  21. Dedicated Zero-Field Setups no major systematic uncertainty anymore measured to 3keV nr Columbia, arXiv:1104.2587 and 1209.3658 electronic recoils measured to 2keV ee Rafael F. Lang, Purdue: XENON1T 21

  22. Reducing Systematics charge-based energy scale much better defined: ~(S2/S1) ~(S1/S2) S1 S2 arXiv:1202.1924 → measure charge yield (and light yield of course) more precisely • for nuclear and electronic recoils • • in situ and in dedicated experiments Rafael F. Lang, Purdue: XENON1T 22

  23. Dedicated R&D @Columbia,Zürich • optimized for <1mm position resolution • Compton coincidence ( g ) and neutron tagging (n) Columbia, Zürich Rafael F. Lang, Purdue: XENON1T

  24. Absolute (!) Rate Matching XENON100 AmBe calibration: systematics ~% level… in preparation Rafael F. Lang, Purdue: XENON1T 24

  25. Excellent Understanding Already XENON100: maximum deviation <2% in preparation Rafael F. Lang, Purdue: XENON1T 25

  26. How To Measure Poisson Process? so far: all effects assumed to give simple Poissonian, plus Gaussian PMT response (most conservative assumption) Purdue, Zürich Rafael F. Lang, Purdue: XENON1T 26

  27. In Situ Nuclear Energy Calibration water-proof deuterium-deuterium generator (NSD-Fusion) optimized for low fluxes XENON1T DD Neutron TPC Generator E n =2.5MeV q use this scatter Purdue δE~1keV nr @ 10keV nr Rafael F. Lang, Purdue: XENON1T 27

  28. XENON1T is Proven Technology commissioning late 2014, data taking 2015, limit ~2017: DAMA CoGeNT CRESST CRESST CDMS Rafael F. Lang, Purdue: XENON1T 28

  29. Rafael F. Lang, Purdue: XENON1T

  30. Calibration with 83m Kr 86 d 83 Rb 92% Q EC =910 keV 1.842 h 83m Kr 147 ns stable 83 Kr decay drift Rafael F. Lang, Purdue: XENON1T 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend