x ray pulse shape analysis on pulse shape analysis on x
play

X-ray pulse-shape analysis on pulse-shape analysis on X-ray - PowerPoint PPT Presentation

ETL ETL X-ray pulse-shape analysis on pulse-shape analysis on X-ray bridge-type microcalorimeters microcalorimeters with with bridge-type Ti-Au transition-edge sensors transition-edge sensors Ti-Au Masahiro Ukibe *a , Keiichi Tanaka b ,


  1. ETL ETL X-ray pulse-shape analysis on pulse-shape analysis on X-ray bridge-type microcalorimeters microcalorimeters with with bridge-type Ti-Au transition-edge sensors transition-edge sensors Ti-Au Masahiro Ukibe *a , Keiichi Tanaka b , Fuminori Hirayama a , Taku Mizuki c , Tomotaka Hikosaka d , Toshimitsu Morooka b , Kazuo Chinone b , Ushio Kawabe d , Toshio Nemoto c , Masao Koyanagi a , Masataka Ohkubo a , Naoto Kobayashi a a Electrotechnical laboratory , b Seiko Instruments Inc., c Univ. of Meiji, d Chiba Inst. of Tech.

  2. ETL ETL Story • Introduction • Experiment 1) Fabrication of the bridge-type membrane 2) Fabrication of the TES 3) Characteristics of TES microcalorimeter 4) Setup for X-ray measurement • Results and Discussion • Summary

  3. ETL ETL Introduction - 1 (1) Industry Microanalysis (EDAX) (2) Astronomy Satellite mission (Astro-E, Constellation-X, XEUS) (3) Biology Optical spectroscopy Advanced ED spectrometer High energy resolution, Fast response time , Large detection area

  4. ETL ETL Introduction - 2 Candidate of advanced X-ray detectors - Microcalorimeter of Transition Edge Sensor (TES) The status of the art Energy resolution - 4.5 eV for 5.89 keV x-ray Response time - ~ 10 2 cps Detection area - ~ 0.1 mm 2 Goal Energy resolution - < 5 eV for 6 keV x-ray Response time - > 10 2 cps Detection area - > 50 mm 2 (7.5 mm x 7.5 mm) Increasing the detection area Array of the TES microcalorimeters

  5. ETL ETL Introduction - 3 Array of the TES microcalorimeters Conventional TES TES Frangible structure Absorber 1. Thin membrane < 1 µ m electrode Membrane <1mm 2. Open space under the membrane ~1mm Substrate Difficult to make large scale array of TESs Improving the robustness New membrane structure - Bridge type membrane

  6. ETL ETL Experiment - 1 Si (1) 1) Fabrication of bridge type membrane SiO 2 1. Cleaning of a SOI wafer to remove a SiN oxide layer in buffered HF. 2. Deposition of SiNx layer(<1 µ m) on (2) the front side of the SOI by plasma- CVD in SH 4 and N 2 gases. Al 3. Deposition and pattering of Al layer (3) on the SiNx layer. 4. RIE etching of SiNx with SF 6 and O 2 gases, and then removing of the Al mask. (4) 5. After the making the TES,absorber, and wires, anisotropic etching of the 30-50 m m SOI layer from the front side in (5) Hydrazine monohydrate solution at 73 ℃ for about 4 hours . Membrane

  7. ETL ETL Experiment - 2 2) Fabrication of TES Au Ti (1) 1. Deposition of Ti(70 nm) and Au(30 nm) films on the SOI wafer by RF- sputtering and patterning by 1% HF and KI+I solutions, respectively. absorber 2. Deposition of 300 nm-thick Au (2) absorber layer on the Ti/Au bilayer by RF-sputtering and patterning by lift-off technique. 3. Deposition of 200 nm-thick Nb film by Nb (3) RF-sputtering and forming of electric leads with lift-off technique.

  8. ETL ETL Experiment - 3 TES microcalorimeter Membrane TES SiNX Nb Si SiO2 SiO2 Si Au Si (111) <001> Nb <010> Si (100) SiNX Size TES : 500 µ m x 1000 µ m (100) (111) Absorber : 300 µ m x 300 µ m Membrane : 2100 µ m x 700 µ m Membrane Thickness : 1 µ m SiO 2 SOI wafer : Si(30-50)/SiO 2 (1)/Si(525) in µ m, (100) orientation

  9. ETL ETL Experiment - 4 3) Characteristics of TES microcalorimeter 0.3 Normal resistance 0.25 R N : 0.27 Ω TES : Ti(70 nm)/Au(30 nm) Absorber : Au(300 nm) Resistance( Ω ) 0.2 Bias current: 2 µ A Transition temperature 0.15 T C : 0.43 K Thermal conductance 0.1 G :13 nW/K 0.05 K : 41 nW/K4 0 0.426 0.428 0.430 0.432 0.434 Temperature(K)

  10. ETL ETL Experiment - 5 4) Setup for X-ray measurement Bias resistance SQUID R bisa : 0.1 Ω Modulation SQUID amp gain A SQUID : 600 V/A TES 0.4K RT amp gain A RT : 100 Ω X-ray source : 55 Fe 4.2K K α : 5.89 keV K β : 6.49 keV

  11. ETL ETL Experiment - 6 4) Setup for X-ray measurement - SQUID array N SQUID 200 5.8 pA/ Hz 1/2 S SQUID B SQUID 1 MHz M input 60pH A SQUID 600 V/A 4.2 K T OPERATE SQUID array

  12. ETL ETL Results and Discussion - 1 Feedback curve 220 3.5 Narrow plateau region TES(Ti:70nm Au:30nm) R Bias =0.1 Ω and R 0 =0.27 Ω 200 3 ( ETF region ) of P JOULE ( V Bias ) 180 2.5 Current( µ A) Power(nW) 160 2 140 Large R bisa : 0.1 Ω 1.5 120 1 100 0.5 80 Residual Resistance( R resi ) 60 0 of the bias circuit 0.00 5.00 10.0 15.0 20.0 25.0 30.0 Voltage( µ V) 25 m Ω Bias current( I Bias ) and Joule power( P JOULE ) as a function of bias Voltage( V Bias )

  13. ETL ETL Results and Discussion - 2 X-ray pulse 50 Operation condition 40 V Bisa : 18 µ V Pulse height(mV) 30 I Bias : 70 µ A 20 TES resistance R : 0.25 Ω 10 TES temperature 0 T OPERATE : 0.43 K -100 0 100 200 300 400 Bath temperature Time( µ sec) T BATH : 0.35 K There are two types of pulses : Large and Small pulses

  14. ETL ETL Results and Discussion - 3 Large pulse 50 τ rise : ~3 µ sec 40 Pulse height(mV) τ decay1 : ~10 µ sec 30 τ decay2 : ~130 µ sec 20 10 Fitted curve 0 t + − − × a ( a a exp( )) 1 2 3 τ -100 0 100 200 300 400 rise Time( µ sec) t t − + − ( a exp( ) a exp( )) 4 τ 5 τ decay 1 decay 2

  15. ETL ETL Results and Discussion - 4 Small pulse 20 τ rise : ~10 µ sec 15 Pulse height(mV) τ decay1 : ~130 µ sec 10 Fitted curve 5 t + − − × a ( a a exp( )) 1 2 3 τ 0 rise t − a exp( ) 4 τ -5 -100 0 100 200 300 400 decay 1 Time( µ sec)

  16. ETL ETL Results and Discussion - 5 Estimation of time constants - 1 1. Slow decay time : ~130 µ sec Effective response time ( τ eff ) of TES τ = + αφ ( − = / ( 1 / ) φ = 1 − n 1 ) C G n n ( / ) G nKT T BATH T eff OPERATE OPERATE α ≅ 50, T OPERATE = 0.43 K , T BATH = 0.35 K τ eff = 115 µ sec 2. Rise decay time of large pulses : ~3 µ sec Electrical response time ( τ ele ) of TES τ ele = L/R R = 0.25 Ω , L ≅ 1 µ H τ ele = 4 µ sec

  17. ETL ETL Results and Discussion - 6 Estimation of time constants - 2 3. Fast decay time of large pulses and rise time of small pulses ~10 µ sec 2 X-ray absorption 1 absorber 1. TES X-ray 2. Absorber τ 1 ~10 µ sec Heat flow SiN X membrane TES τ 2 ~130 µ sec Si Time of heat transfer between TES and Absorber Time constant of large pulses :TES to Absorber small pulses : Absorber to TES

  18. ETL ETL Summary • We have fabricated the bridge-type TES microcalorimeters . (Ti(70 nm)/Au(30 nm) bilayer TES and Au(300 nm) absorber) • 5.9 keV X-ray was measurement with 200-series array of SQUIDs . • X-ray pulses are put into two categories. 1) Large pulse :Large pulse height, Fast rise and two decay time 2) Small pulse :Small pulse height, Slow rise and one decay time 3) Large pulses X-ray events in the TES 4) Small pulses X-ray events in the absorber

  19. ETL ETL Future Each TES size TES : 500 µ m x 1000 µ m Absorber : 300 µ m x 300 µ m Membrane : 2100 µ m x 700 µ m The total 5 x 5 array size 7 mm x 11 mm

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend