with the 3d solver openfoam
play

with the 3D solver OpenFOAM - A comparison of different - PowerPoint PPT Presentation

IIW Annual Assembly 2011 SG212: the physics of welding Electric welding arc modeling with the 3D solver OpenFOAM - A comparison of different electromagnetic models - Isabelle Choquet, Alireza J. Shirvan, and Hkan Nilsson University


  1. IIW Annual Assembly 2011 SG212: the physics of welding Electric welding arc modeling with the 3D solver OpenFOAM - A comparison of different electromagnetic models - Isabelle Choquet,¹ Alireza J. Shirvan,¹ and Håkan Nilsson² ¹University West, Dep. of Engineering Science, Trollhättan, Sweden ²Chalmers University of Technology, Dep. of Applied Mechanics, Gothenburg, Sweden IIW Doc.212-1189 -11

  2. • Cont ntext / / Motiv tivation: better understand the heat source • So Software Open enFOAM-1.6 .6.x .x - open source CFD software - C++ library of object-oriented classes for implementing solvers for continuum mechanics IIW Doc.212-1189 -11

  3. IIW intermediate meeting, Trollhättan, Doc. XII-2017-11 ” Numerical simulation of Ar- x%CO₂ shielding gas and its effect on an electric welding arc ” Influence of BC on anode an cathode Influence of gas composition Here focus on a comparison of different electromagnetic models IIW Doc.212-1189 -11

  4. Model: thermal fluid part Main assumptions (plasma core): • one-fluid model • local thermal equilibrium • mechanically incompressible and thermally expansible • steady flow • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11

  5. Model: thermal fluid part Main assumptions (plasma core): • one-fluid model • local thermal equilibrium • mechanically incompressible and thermally expansible • steady flow • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11

  6. Model: thermal fluid part Main assumptions (plasma core): • one-fluid model • local thermal equilibrium • mechanically incompressible and thermally expansible • steady flow • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11

  7. Model: thermal fluid part Main assumptions (plasma core): • one-fluid model • local thermal equilibrium ρ T • mechanically incompressible, and thermally ( ) expansible • steady flow • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11

  8. Model: thermal fluid part Argon plasma density as function of temperature. IIW Doc.212-1189 -11

  9. Model: thermal fluid part Main assumptions: • one-fluid model • local thermal equilibrium  ( T ) • mechanically incompressible, and thermally expansible • plasma optically thin • steady • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11

  10. Model: thermal fluid part Main assumptions: • one-fluid model • local thermal equilibrium  ( T ) • mechanically incompressible, and thermally expansible • plasma optically thin • steady laminar flow • laminar flow(assuming laminar shielding gas inlet) IIW Doc.212-1189 -11

  11. Model: electromagnetic part • 3D model with • 2D axi-symmetric models:  Electric potential formulation  Magnetic field formulation IIW Doc.212-1189 -11

  12. Model: electromagnetic part     • 3D model with V , A E , J , B • 2D axi-symmetric models:  Electric potential formulation  Magnetic field formulation IIW Doc.212-1189 -11

  13. Model: electromagnetic part     • 3D model with V , A E , J , B • 2D axi-symmetric models:    Electric potential formulation V E , J B θ  Magnetic field formulation IIW Doc.212-1189 -11

  14. Model: electromagnetic part     • 3D model with V , A E , J , B • 2D axi-symmetric models:    Electric potential formulation V E , J B θ    Magnetic field formulation B E , J θ IIW Doc.212-1189 -11

  15. Model: electromagnetic part     • 3D model with V , A E , J , B • 2D axi-symmetric models:    Electric potential formulation V E , J B θ    Magnetic field formulation B E , J θ M.A. Ramírez , G. Trapaga and J. McKelliget (2003). A comparison between two different numerical formulations of welding arc simulation. Modelling Simul. Mater. Sci. Eng , 11 , pp. 675-695. IIW Doc.212-1189 -11

  16. Test case: Tungsten Inert Gas welding Applied current: I=200A Ar shielding Shielding gas  gas inlet inlet u 2 . 36 m / s Picture of a TIG torch Sketch of the cross section of a TIG torch IIW Doc.212-1189 -11

  17.  r μ      B ( A ) 0 B J ( l ) l dl θ θ θ axial r 0 Magnetic field magnitude calculated with the electric potential formulation (left) and the 3D approach (right).

  18.  r μ      B ( A ) 0 B J ( l ) l dl θ θ θ axial r 0 Why ? Magnetic field magnitude calculated with the electric potential formulation (left) and the 3D approach (right).

  19. Maxwell’s equations   B    Gauss’ law for magnetism: 0         ε μ μ  Ampère’s law: E B J 0 0 t 0        Faraday’s law: B E t       Gauss’ law: ε 1 E q 0 tot       + charge conservation 0 q tot J t            J J J J J J + generalized Ohm’ s law drift ind Hall diff ther IIW Doc.212-1189 -11 •

  20. Assumptions (plasma core)    8 m  10  L local electro-neutrality Debye c  quasi-steady electromagnetic phenomena   IIW Doc.212-1189 -11

  21. Maxwell’s equations   B    Gauss’ law for magnetism: 0         ε μ μ  Ampère’s law: E B J 0 0 0 t        Faraday’s law: B E t       Gauss’ law: ε 1 E q 0 tot 0       + charge conservation q tot J 0 t 0            J J J J J J + generalized Ohm’ s law drift ind Hall diff ther 0 0 IIW Doc.212-1189 -11 •

  22. Assumptions (plasma core)    8 m  10  L local electro-neutrality Debye c     μ L , t E J  quasi-steady electromagnetic c c 0 t phenomena   IIW Doc.212-1189 -11

  23. Maxwell’s equations   B    Gauss’ law for magnetism: 0         ε μ μ E B J  Ampère’s law: 0 0 t 0 0        Faraday’s law: B E t 0       Gauss’ law: ε 1 E q 0 tot 0       + charge conservation q tot J 0 t 0            J J J J J J + generalized Ohm’ s law drift ind Hall diff ther 0 0 IIW Doc.212-1189 -11 •

  24. Assumptions (plasma core)    8 m  10  L local electro-neutrality Debye c     μ L , t E J  quasi-steady electromagnetic c c 0 t phenomena       σ          σ / 1 J J B J E Lar Lar coll Hall drift n e   IIW Doc.212-1189 -11

  25. Maxwell’s equations   B    Gauss’ law for magnetism: 0         ε μ μ E B J  Ampère’s law: 0 0 t 0 0        Faraday’s law: B E t 0  ε      Gauss’ law: 1 E q 0 tot 0       + charge conservation q tot J 0 t 0            J J J J J J + generalized Ohm’ s law drift ind Hall diff ther 0 0 0 IIW Doc.212-1189 -11 •

  26. Assumptions (plasma core)    8 m  10  L local electro-neutrality Debye c     μ L , t E J  quasi-steady electromagnetic c c 0 t phenomena       σ          σ / 1 J J B J E Lar Lar coll Hall drift n e      Re   σ   1 J u B J m ind drift  IIW Doc.212-1189 -11

  27. Maxwell´s equations   B    Gauss’ law for magnetism: 0         ε μ μ E B J  Ampère’s law: 0 0 t 0 0        Faraday’s law: B E t 0  ε      Gauss’ law: 1 E q 0 tot 0       + charge conservation q tot J 0 t 0            J J J J J J + generalized Ohm’ s law drift ind Hall diff ther 0 0 0 0 IIW Doc.212-1189 -11 •

  28. Maxwell´s equations   B    Gauss’ law for magnetism: 0         ε μ μ E B J  Ampère’s law: 0 0 t 0 0        Faraday’s law: B E t 0  ε      Gauss’ law: 1 E q 0 tot 0       + charge conservation q tot J 0 t 0            J J J J J J + generalized Ohm’ s law drift ind Hall diff ther 0 0 0 0 IIW Doc.212-1189 -11 •

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend