wireless data networks link layer
play

Wireless data networks Link Layer Martin Heusse X L A TEX E - PowerPoint PPT Presentation

Wireless data networks Link Layer Martin Heusse X L A TEX E Aloha (1972) i = 1 while (i <= maxAttempts) do send packet wait for acknowledgement or timeout if ack received then Central DATA host leave ACK wait for random time


  1. Wireless data networks Link Layer Martin Heusse X L A TEX E

  2. Aloha (1972) i = 1 while (i <= maxAttempts) do send packet wait for acknowledgement or timeout if ack received then Central DATA host leave ACK wait for random time increment i end do Link layer — 2

  3. Aloha performance with Poisson traffic 1 m T exp(-2 m T) 0.8 0.6 P 0.4 0.2 0 0 0.5 1 1.5 2 m T Link layer — 3

  4. Slotted Aloha • Access takes place on discrete time “slots” (D, 2D, 3D ms after the end of the previous transmission) • Number of transmission during a slot: P [ N ( D ) = n ] = ( µ D ) n exp ( − µ D ) n ! • The probability of transmission without collision becomes simply: P [ N ( D ) = 1] = µ D exp ( − µ D ) Max for µ D = 1 • Used for initial access in GSM… Link layer — 4

  5. CSMA for Wireless 802.11 DCF—basic 3 … Data + ACK Data + ACK 2 … Data exponential backoff collision CW ← 2 x CW 1 … Data Host # time DIFS Elapsed backoff Medium busy Residual backoff Link layer — 5

  6. CSMA/CA (Bharghavan 94: MACAW) • Collision Avoidance with hidden terminal • Send a short frame which may collide (RTS) • The intended receiver reserves the channel around himself (CTS with explicit Data frame duration) However, this does not work if a station (D) could not decode the CTS… Data RTS Data A Collision CTS Collision B Data NAV C RTS D Link layer — 6

  7. xIFS: Interframe spacing • SIFS • PIFS • DIFS • EIFS Link layer — 7

  8. 802.11 network DS AP BSS STA IBSS Link layer — 8

  9. Structure of a 802.11 frame (+ ACK) t tr Data C 4 bytes MAC header R 30 bytes IP LLC C t cont t pr t pr t ack 50 µs 10 µs ACK MPDU 14 bytes DIFS backoff PLCP PLCP SIFS PLCP PLCP preamble header preamble header Link layer — 9

  10. 802.11 Data frame (QoS control field is generally not present) • 4 address fields! (what’s a DS—distribution system?) ✓ Address 1: always used for reception decision ✓ Address 2: Address of transmitting station ✓ Address 3: Final recipient (to DS); Original source (from DS); BSSID (IBSS mode) ✓ Address 4: source address if frame is in transit between relays • Duration: used by other stations to set their NAV Link layer — 10

  11. Address fields content !"#$% &'"(#$% )**'+,,#- )**'+,,#. )**'+,,#/ )**'+,,#0 D D R6&S&$6 H6&S&76 477T$ OP6 D L R6&S&$6 H6&S&477T$ 76 OP6 L D R6&S&477T$ H6&S&76 $6 OP6 L L R6 H6 $6 76 Link layer — 11

  12. ACK frame format RA: address of sender of data frame Link layer — 12

  13. RTS frame format • Duration: RTS+SIFS+CTS+SIFS+DATA+SIFS+ACK Link layer — 13

  14. Management frames • Beacons: ✓ Timestamp ✓ Beacon interval ✓ Capability (PCF available? Encryption required?) ✓ SSID (up to 32 bytes) ✓ Required rates • Association requests/responses Link layer — 14

  15. PLCP Phy. Layer Convergence Proto. • Duration: 802.11b: 192µs @ 1Mb/s (Short preamble option: 72 bits preamble @ 1Mb/s, PLCP head. @ 2Mb/s → 92µs) • Signal: data transmission bit rate Link layer — 15

  16. PLCP OFDM (11a, 11g) 5>?5,J(4;(' KLEG K(-('M(; 54'$1N E4$: CGKOP?G E4$: >GHIEJ 54;,U$1- 5C67 ],A$1- ),A$1 ),A$1 R,A$1- )R,A$1- R,A$1- )Y,A$1- ?/;(;X<#6= ?/;(;X<#6= ,QU5CVB,',W,)XYT ,QKLEG,$-,$8;$941(;,$8,CPIHL>T CPIHL> 5>?5,5'(43A:( 6LEL )Y,CN3A/:- <8(,<#6=,CN3A/: O4'$4A:(,H&3A(',/2,<#6=,CN3A/:- Duration: ≈ 22µs Link layer — 16

  17. 802.11a PHYs 3./&/!)*$+! 3./&/!)*$+! "#$#!)*$+! "#$#!%#$&! 3./*24!%#$& 6&%! 6&%!<="(! 6&%!<="(! (./01#$*.2 '()*$+,+- '5- +0)7#%%*&% +>?).1 +>?).1 '8 9:;3 - '8 39:; - '8 "9:; - A! B>CD EFG E H6 GH "! B>CD IFH E H6 IA EG! J>CD EFG G "A H6 E6! J>CD IFH G "A 5G GH! EAKJL= EFG H E"G "A IA! EAKJL= IFH H E"G EHH H6! AHKJL= GFI A G66 E"G MH! AHKJL= IFH A G66 GEA Link layer — 17

  18. One problem in a multirate cell (“Performance anomaly”) • All stations access the network with same probability • So in time T, they will all send approx. the same number of frames • If one of them transmit at 1Mb/s, everybody gets only a fraction of this Link layer — 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend