wide area networking
play

Wide Area Networking A short introduction to High-Speed - PowerPoint PPT Presentation

Wide Area Networking A short introduction to High-Speed Wide-Area-Networking August 31, 2005 1 Wide Area Networking Quick introduction to the OSI model Quick introduction to TCP(/IP) Problems of TCP on a high speed WAN link


  1. Wide Area Networking A short introduction to High-Speed Wide-Area-Networking August 31, 2005 1

  2. Wide Area Networking ● Quick introduction to the OSI model ● Quick introduction to TCP(/IP) ● Problems of TCP on a high speed WAN link ● Measurements August 31, 2005 2

  3. The OSI Model ● OSI – Open Systems Interface ● Defines a networking framework in seven layers Each layer provides interface to ● the layer above Each layer adds a header (some ● also a trailer) Lowest layer transmits the ● message August 31, 2005 3

  4. The OSI Model Physical Layer ● Concerned with transmission of bits ● Standardized protocol for electrical, mechanical and signaling interfaces ● DataLink Layer ● Groups bits into frames and ensures correct delivery ● Handles errors in physical layer ● Adds bits (head/tail) + checksum (receiver verifies checksum) ● Sublayers: LLC – Logical Link Control and MAC – Medium Access Control ● Network Layer (“Packet” layer) ● Transmission of packets and choosing best path for the packet (routing) ● IP – Internet Protocol ● ● Connectionless; IP packet can be send without a connection being established ● Each packet gets routed independently to it's destination August 31, 2005 4

  5. OSI Model Transport Layer ● Ensures reliable service (network layer does not deal with lost messages) ● Breaks massage into packets , assignes a sequence number and sends them ● Builts reliable network connection on top of IP (or other protocols) ● In case of IP, packets arriving out of order must be reordered ● TCP – Transport Control Protocol (TCP/IP widely used protocols) ● UDP – Universal Datagram Protocol (connectionless) ● Session Layer ● Establishes, maintains and terminates sessions across networks ● Examples: interactive login and file transfer connections ● Presentation Layer ● Translates application network format + De-/Encryption, Compression... ● Application Layer ● ● DNS, FTP, SMTP, NFS, ... August 31, 2005 5

  6. A bit more about TCP/IP + Ethernet I ● Designed for slow and unreliable networks (1970's) ● The TCP Window ● Amount of outstanding data a sender can send before it gets an ACK back from the receiver. ● Why do we need it? Congestion control ● Network has a bottleneck somewhere sender too fast packet loss TCP Window throttles the transmission speed down no packet loss ● Min. window for max. bandwidth = bandwidth ∗ delay (10Gb and 100ms delay: min. TCP window = 128 Mbyte) ● Standard TCP Window (*nix): 32kByte - 256kByte August 31, 2005 6

  7. A bit more about TCP/IP + Ethernet II ● The MTU – Maximum Transfer Unit ● Chunk size the data gets choped into ( frame size) (+ Headers and Trailers) ● The bigger the MTU, the smaller the overhead (... the more efficient the transfer... ) ● Ethernet standard: 1500 byte (remnant from unreliable networks...) ● High end equipment supports up to 9216 byte (Intel 10Gb NICs support 16114 byte MTU !!) ● Very difficult to build switches/router for bigger MTU (large fast buffers, checksums, etc. ) August 31, 2005 7

  8. A bit more about TCP/IP + Ethernet III ● Recovery mechanism after a packet loss is too slow. ● TCP window is cut in half after a packet loss ● Current recovery algorithm increases window size only linearly with time ● Disastrous effect on High-Speed WANs August 31, 2005 8

  9. A bit more about TCP/IP + Ethernet IV ● Responsiveness ρ measures how quickly the connection goes back to full bandwidth after a packet loss: ρ = C ∗ RTT 2 2 ∗ MSS C – Capacity of the link RTT – Round Trip Time MSS – Message size (MTU - 40Bytes) August 31, 2005 9

  10. How does a WAN link look like? August 31, 2005 10

  11. Measurements ● With ATLAS TDAQ group ● Ethernet over WAN equipment ● Amsterdam and Ottawa ● With DataTag ● “Standard” WAN ● Chicago and California ● All measurements with improved recovery algorithms!! ● All measurements were memory-to-memory transfers! August 31, 2005 11

  12. Measurements – ATLAS ● ~15 hours with only 2-3 packet losses ● Factor >100 better than Spec August 31, 2005 12

  13. Measurements – ATLAS The effect of TCP window size and MTU Transfer rates 5500 5000 4500 4000 8M Mbits/sec 3500 10M 3000 12M 14M 2500 16M 2000 64M 1500 1000 500 0 1500 1518 4472 8178 9000 9216 MTU size Bandwidth Delay Product (min. window size): 10Gb/s ∗ 17ms = 20MB August 31, 2005 13

  14. Measurements – ATLAS TCP Recovery time for different algorithms August 31, 2005 14

  15. Measurements - ATLAS ● First transatlantic Ethernet connection!! Figure 7 - TCP single stream throughput versus the client TCP window size August 31, 2005 15

  16. Measurements – DataTag Measurements with Standard TCP recovery algorithm 35 minutes 35 minutes Geneva Chicago: C= 1Gbit/s, MTU=1500byte, RTT=120ms ● Packet loss occurs, when throughput approaches pipe size ● On average 75% bandwidth utilisation ● August 31, 2005 16

  17. Measurements – DataTag The effect of different MTU sizes ~75% link utilisation in both cases ● Large MTU sizes accelerate the growth of the window size ● Time to recover after a loss decreases (significantly) ● August 31, 2005 17

  18. Measurements – DataTag ● ~5.6 Gb/s to Chicago (Telecom 2003) ● Dedicated link ● Sustained for hours ● ~6.6 Gb/s to California ● Shared link between Chicago and California ● Sustained only for ~10min ● New Land Speed Record ● ~7.4 Gb/s to California ● Sustained only for 2-4min August 31, 2005 18

  19. Measurements – DataTag ● Land Speed Record at Telecom 2003: 5.65 Gb/s ● Geneva  Chicago August 31, 2005 19

  20. Latest Land Speed Record (submitted ;-) ) ● 15766 km ● 6.57 Gb/s =103583Tbm/s August 31, 2005 20

  21. Outlook ● Start disk-to-disk transfers ● Sustained (low-number-)multistream connections ● ~400-500MB/s for months ● Aggregation of 1Gb links into 10Gb WAN ● Direct 10Gb connection for disk-to-disk transfers ● First step: ~350MB/s disk-to-memory with RFIO (home grown protocol) via 10Gb LAN ● No tests up to now many Unknows August 31, 2005 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend