what kind of tensors are compressible
play

What kind of tensors are compressible? Tianyi Shi Cornell - PowerPoint PPT Presentation

What kind of tensors are compressible? Tianyi Shi Cornell University ts777@cornell.edu July 19, 2019 Work with: Alex Townsend (Cornell University) Tianyi Shi (Cornell) Compressible tensors July 19, 2019 1 / 14 Tensor decomposition CP


  1. What kind of tensors are compressible? Tianyi Shi Cornell University ts777@cornell.edu July 19, 2019 Work with: Alex Townsend (Cornell University) Tianyi Shi (Cornell) Compressible tensors July 19, 2019 1 / 14

  2. Tensor decomposition CP [Hitchcock, 1927; Cattell, 1944; Carroll & Chang, 1970; Harshman, 1970] Tucker [Tucker, 1963] Tensor-train [Oseledets, 11] · · · Methodologies to understand the compressibility of tensors: Tianyi Shi (Cornell) Compressible tensors July 19, 2019 2 / 14

  3. Tensor decomposition CP [Hitchcock, 1927; Cattell, 1944; Carroll & Chang, 1970; Harshman, 1970] Tucker [Tucker, 1963] Tensor-train [Oseledets, 11] · · · Methodologies to understand the compressibility of tensors: Algebraic structures: X i , j , k = f ( x i , y j , z k ) Tianyi Shi (Cornell) Compressible tensors July 19, 2019 2 / 14

  4. Tensor decomposition CP [Hitchcock, 1927; Cattell, 1944; Carroll & Chang, 1970; Harshman, 1970] Tucker [Tucker, 1963] Tensor-train [Oseledets, 11] · · · Methodologies to understand the compressibility of tensors: Algebraic structures: X i , j , k = f ( x i , y j , z k ) Smoothness: f ( x , y , z ) ≈ p n ( x , y , z ) Tianyi Shi (Cornell) Compressible tensors July 19, 2019 2 / 14

  5. Tensor decomposition CP [Hitchcock, 1927; Cattell, 1944; Carroll & Chang, 1970; Harshman, 1970] Tucker [Tucker, 1963] Tensor-train [Oseledets, 11] · · · Methodologies to understand the compressibility of tensors: Algebraic structures: X i , j , k = f ( x i , y j , z k ) Smoothness: f ( x , y , z ) ≈ p n ( x , y , z ) Displacement structure · · · Tianyi Shi (Cornell) Compressible tensors July 19, 2019 2 / 14

  6. Rank bound of tensors with displacement structure Theorem (S. & Townsend, 19) Suppose X × 1 A (1) + X × 2 A (2) + X × 3 A (3) = G , where A (1) , A (2) , A (3) are Minkowski sum separated with disjoint sets E j and F j for j = 1 , 2 . Then, for a fixed 0 < ǫ < 1 , we have ( rank TT ( X )) j ≤ k j ν j , ν j = rank ( G j ) , j = 1 , 2 , ǫ √ where G j is the jth unfolding of G and k j is an integer so that Z k j ( E j , F j ) ≤ ǫ/ 3 . Tianyi Shi (Cornell) Compressible tensors July 19, 2019 3 / 14

  7. Tensor-train decomposition 1 × s 1 s 1 × s 2 s 2 × 1 G 1 ( i 1 ) X i 1 , i 2 , i 3 = G 3 ( i 3 ) G 2 ( i 2 ) rank TT ( X ) = (1 , s 1 , s 2 , 1) . Storage: 3 � s k − 1 s k n k . k =1 Bound: 3 k � � s k ≤ rank ( X k ) , ( s s ǫ ) k ≤ rank ǫ ( X k ) , s X k = reshape ( X , n s , n s ) . s =1 s = k +1 Tianyi Shi (Cornell) Compressible tensors July 19, 2019 4 / 14

  8. Zolotarev number [Zolotarev, 1877] sup z ∈ E | r ( z ) | Z k ( E , F ) := inf inf z ∈ F | r ( z ) | , k ≥ 0 , r ∈R k , k E and F are disjoint complex sets and R k , k is the set of irreducible rational functions of the form p ( x ) / q ( x ) with polynomials p and q of degree at most k . Tianyi Shi (Cornell) Compressible tensors July 19, 2019 5 / 14

  9. Zolotarev number [Zolotarev, 1877] sup z ∈ E | r ( z ) | Z k ( E , F ) := inf inf z ∈ F | r ( z ) | , k ≥ 0 , r ∈R k , k E and F are disjoint complex sets and R k , k is the set of irreducible rational functions of the form p ( x ) / q ( x ) with polynomials p and q of degree at most k . Im E 1 Re F 1

  10. Zolotarev number [Zolotarev, 1877] sup z ∈ E | r ( z ) | Z k ( E , F ) := inf inf z ∈ F | r ( z ) | , k ≥ 0 , r ∈R k , k E and F are disjoint complex sets and R k , k is the set of irreducible rational functions of the form p ( x ) / q ( x ) with polynomials p and q of degree at most k . Im E 1 F 2 E 2 Re F 1 Tianyi Shi (Cornell) Compressible tensors July 19, 2019 5 / 14

  11. Minkowski sum separation Minkowski sum separated matrices For normal matrices A (1) , A (2) , A (3) , and disjoint sets E j and F j , Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 . Tianyi Shi (Cornell) Compressible tensors July 19, 2019 6 / 14

  12. Minkowski sum separated matrices Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . Tianyi Shi (Cornell) Compressible tensors July 19, 2019 7 / 14

  13. Minkowski sum separated matrices Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . � A (3) � Λ Im × × × × A (1) � � Λ × × × × × × × × × × × � A (2) � Λ Re

  14. Minkowski sum separated matrices Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . � A (3) � Λ Im × × × × A (1) � � Λ × × × × × × × E 1 × × × × × × × × × � A (2) � Λ Re

  15. Minkowski sum separated matrices Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . � A (3) � Λ Im × × × × A (1) � � Λ × × × × × × × E 1 × × × × × × × × × � A (2) � Λ Re F 1

  16. Minkowski sum separated matrices Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . � � A (3) � A (3) � Λ Λ Im × × × × × × × × A (1) � � Λ × × E 2 × × × × × × × × E 1 × × × × × × × × × × × × � � A (2) � A (2) � Λ Λ Re F 1

  17. Minkowski sum separated matrices Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . � � A (3) � A (3) � Λ Λ Im × × × × × × × × A (1) � � Λ × × E 2 × × × × × × × × E 1 × × × × × × × × × × × × � � A (2) � A (2) � Λ Λ Re F 2 F 1 Tianyi Shi (Cornell) Compressible tensors July 19, 2019 7 / 14

  18. Rank bound of tensors with displacement structure (ctd.) Theorem (S. & Townsend, 19) Suppose X × 1 A (1) + X × 2 A (2) + X × 3 A (3) = G , where A (1) , A (2) , A (3) are Minkowski sum separated with disjoint sets E j and F j for j = 1 , 2 . Then, for a fixed 0 < ǫ < 1 , we have ( rank TT ( X )) j ≤ k j ν j , ν j = rank ( G j ) , j = 1 , 2 , ǫ √ where G j is the jth unfolding of G and k j is an integer so that Z k j ( E j , F j ) ≤ ǫ/ 3 . Tianyi Shi (Cornell) Compressible tensors July 19, 2019 8 / 14

  19. Rank bound of tensors with displacement structure (ctd.) Theorem (S. & Townsend, 19) Suppose X × 1 A (1) + X × 2 A (2) + X × 3 A (3) = G , where A (1) , A (2) , A (3) are Minkowski sum separated with disjoint sets E j and F j for j = 1 , 2 . Then, for a fixed 0 < ǫ < 1 , we have ( rank TT ( X )) j ≤ k j ν j , ν j = rank ( G j ) , j = 1 , 2 , ǫ √ where G j is the jth unfolding of G and k j is an integer so that Z k j ( E j , F j ) ≤ ǫ/ 3 . Special case If Λ( A ( j ) ) ⊆ [ a , b ] for 0 < a < b < ∞ , and γ j = (3 a + j ( b − a ))(3 b − j ( b − a )) , then 9 ab √ � � log(16 γ j ) log(4 3 /ǫ ) ( rank TT ( X )) j ≤ k j ν j , k j = . ǫ π 2 Tianyi Shi (Cornell) Compressible tensors July 19, 2019 8 / 14

  20. Solving 3D Poisson equation − ( u xx + u yy + u zz ) = f on Ω = [ − 1 , 1] 3 , u | ∂ Ω = 0 . Ultraspherical spectral discretization [Fortunato & Townsend, 17]: p m n � � � X i , j , k ˜ C (3 / 2) ( x ) ˜ C (3 / 2) ( y ) ˜ C (3 / 2) u = (1 − x 2 )(1 − y 2 )(1 − z 2 ) ( z ) , i j k i =0 j =0 k =0 p m n � � � F i , j , k ˜ C (3 / 2) ( x ) ˜ C (3 / 2) ( y ) ˜ C (3 / 2) f = ( z ) , i j k i =0 j =0 k =0 Tianyi Shi (Cornell) Compressible tensors July 19, 2019 9 / 14

  21. Solving 3D Poisson equation − ( u xx + u yy + u zz ) = f on Ω = [ − 1 , 1] 3 , u | ∂ Ω = 0 . Ultraspherical spectral discretization [Fortunato & Townsend, 17]: p m n � � � X i , j , k ˜ C (3 / 2) ( x ) ˜ C (3 / 2) ( y ) ˜ C (3 / 2) u = (1 − x 2 )(1 − y 2 )(1 − z 2 ) ( z ) , i j k i =0 j =0 k =0 p m n � � � F i , j , k ˜ C (3 / 2) ( x ) ˜ C (3 / 2) ( y ) ˜ C (3 / 2) f = ( z ) , i j k i =0 j =0 k =0 X × 1 A − 1 + X × 2 A − 1 + X × 3 A − 1 = G , Λ( A ) ⊆ [ − 1 , − 1 / (30 n 4 )] , G = F × 1 M − 1 × 2 M − 1 × 3 M − 1 , Tianyi Shi (Cornell) Compressible tensors July 19, 2019 9 / 14

  22. Solving 3D Poisson equation − ( u xx + u yy + u zz ) = f on Ω = [ − 1 , 1] 3 , u | ∂ Ω = 0 . Ultraspherical spectral discretization [Fortunato & Townsend, 17]: p m n � � � X i , j , k ˜ C (3 / 2) ( x ) ˜ C (3 / 2) ( y ) ˜ C (3 / 2) u = (1 − x 2 )(1 − y 2 )(1 − z 2 ) ( z ) , i j k i =0 j =0 k =0 p m n � � � F i , j , k ˜ C (3 / 2) ( x ) ˜ C (3 / 2) ( y ) ˜ C (3 / 2) f = ( z ) , i j k i =0 j =0 k =0 X × 1 A − 1 + X × 2 A − 1 + X × 3 A − 1 = G , Λ( A ) ⊆ [ − 1 , − 1 / (30 n 4 )] , G = F × 1 M − 1 × 2 M − 1 × 3 M − 1 , ( rank TT ( X )) j ≤ s j , s j = O ( ν j log( n ) log(1 /ǫ )) . ǫ Tianyi Shi (Cornell) Compressible tensors July 19, 2019 9 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend