what kind of tensors are compressible
play

What kind of tensors are compressible? Tianyi Shi Cornell - PowerPoint PPT Presentation

What kind of tensors are compressible? Tianyi Shi Cornell University ts777@cornell.edu June 28, 2019 Work with: Alex Townsend (Cornell University) Tianyi Shi (Cornell) Compressible tensors June 28, 2019 1 / 17 What is a tensor? X Why are


  1. What kind of tensors are compressible? Tianyi Shi Cornell University ts777@cornell.edu June 28, 2019 Work with: Alex Townsend (Cornell University) Tianyi Shi (Cornell) Compressible tensors June 28, 2019 1 / 17

  2. What is a tensor? X Why are low rank tensors important? Explicit storage (3D): 3 � n i . i =1 Tianyi Shi (Cornell) Compressible tensors June 28, 2019 2 / 17

  3. What is a tensor? X Why are low rank tensors important? Explicit storage (3D): 3 � n i . i =1 Methodologies to understand the compressibility of tensors: Algebraic structures: X i , j , k = f ( x i , y j , z k ) Tianyi Shi (Cornell) Compressible tensors June 28, 2019 2 / 17

  4. What is a tensor? X Why are low rank tensors important? Explicit storage (3D): 3 � n i . i =1 Methodologies to understand the compressibility of tensors: Algebraic structures: X i , j , k = f ( x i , y j , z k ) Smoothness: f ( x , y , z ) ≈ p n ( x , y , z ) Tianyi Shi (Cornell) Compressible tensors June 28, 2019 2 / 17

  5. What is a tensor? X Why are low rank tensors important? Explicit storage (3D): 3 � n i . i =1 Methodologies to understand the compressibility of tensors: Algebraic structures: X i , j , k = f ( x i , y j , z k ) Smoothness: f ( x , y , z ) ≈ p n ( x , y , z ) Displacement structure Tianyi Shi (Cornell) Compressible tensors June 28, 2019 2 / 17

  6. Tensor decompositions CP decomposition [Kolda & Bader, 09] w 1 w R z 1 z R + . . . + = X y 1 y R Tianyi Shi (Cornell) Compressible tensors June 28, 2019 3 / 17

  7. Tensor decompositions Tucker decomposition [Tucker, 1963] C B G = X A Tianyi Shi (Cornell) Compressible tensors June 28, 2019 4 / 17

  8. Tensor decompositions Tucker decomposition [Tucker, 1963] C B G = X A Tensor-train (TT) decomposition Tianyi Shi (Cornell) Compressible tensors June 28, 2019 4 / 17

  9. Example: Hilbert tensor 1 H i , j , k = i + j + k − 2 , 1 ≤ i , j , k ≤ n . TT-rank Accuracy n TT-rank E.g. n = 100 , ǫ = 10 − 10 , instead of 100 3 , in tensor-train: 25500. Tianyi Shi (Cornell) Compressible tensors June 28, 2019 5 / 17

  10. Tensor-train decomposition [Oseledets, 11] 1 × s 1 s 1 × s 2 s 2 × 1 G 1 ( i 1 ) X i 1 , i 2 , i 3 = G 3 ( i 3 ) G 2 ( i 2 ) rank TT ( X ) = (1 , s 1 , s 2 , 1) . Storage: 3 � s k − 1 s k n k . k =1 Tianyi Shi (Cornell) Compressible tensors June 28, 2019 6 / 17

  11. Tensor-train decomposition [Oseledets, 11] 1 × s 1 s 1 × s 2 s 2 × 1 G 1 ( i 1 ) X i 1 , i 2 , i 3 = G 3 ( i 3 ) G 2 ( i 2 ) rank TT ( X ) = (1 , s 1 , s 2 , 1) . Storage: 3 � s k − 1 s k n k . k =1 Bound: 3 k � � s k ≤ rank ( X k ) , X k = reshape ( X , n s , n s ) . s =1 s = k +1 Tianyi Shi (Cornell) Compressible tensors June 28, 2019 6 / 17

  12. Numerical tensor-train rank Numerical tensor-train rank s ǫ is the smallest vector such that rank TT ( ˜ rank TT ( X ) = s s s ǫ where s s X ) = s s s ǫ , ǫ i 1 , i 2 , i 3 ( X i 1 , i 2 , i 3 ) 2 � 1 / 2 �� �X − ˜ X� F ≤ ǫ �X� F , and ||X|| F = . Lexicographical ordering A vector x x = ( x 1 , . . . , x d ) is less than y x y y = ( y 1 , . . . , y d ), denoted by x x x < lex y y y , if in the first entry for which the vectors differ, x j < y j . In addition, x x ≤ lex y x y y if x x x < lex y y y or x j = y j for all j . Tianyi Shi (Cornell) Compressible tensors June 28, 2019 7 / 17

  13. Displacement structure Matrix AX + XB T = G , A ∈ C m × m , B ∈ C n × n , Tianyi Shi (Cornell) Compressible tensors June 28, 2019 8 / 17

  14. Displacement structure Matrix AX + XB T = G , A ∈ C m × m , B ∈ C n × n , 3D Tensor X × 1 A (1) + X × 2 A (2) + X × 3 A (3) = G , A ( k ) ∈ C n k × n k , The k -mode product For a tensor X ∈ C n 1 ×···× n d and a matrix A ∈ C n k × n k n k � ( X × k A ) i 1 ,..., i k − 1 , j , i k +1 ,..., i d = X i 1 ,..., i d A j , i k . i k =1 Tianyi Shi (Cornell) Compressible tensors June 28, 2019 8 / 17

  15. Displacement structure Matrix AX + XB T = G , A ∈ C m × m , B ∈ C n × n , 3D Tensor X × 1 A (1) + X × 2 A (2) + X × 3 A (3) = G , A ( k ) ∈ C n k × n k , The k -mode product For a tensor X ∈ C n 1 ×···× n d and a matrix A ∈ C n k × n k n k � ( X × k A ) i 1 ,..., i k − 1 , j , i k +1 ,..., i d = X i 1 ,..., i d A j , i k . i k =1 Matrix (again) X × 1 A + X × 2 B = G Tianyi Shi (Cornell) Compressible tensors June 28, 2019 8 / 17

  16. Rank bound of matrices with displacement structure If A and B are normal matrices, Λ( A ) ⊆ E and Λ( B ) ⊆ F , then AX − XB T = G , rank ( G ) = ν implies 2-norm [Beckermann & Townsend, 19] � X − X ν k � 2 ≤ Z k ( E , F ) � X � 2 . Frobenius norm [S. & Townsend] � X − X ν k � F ≤ Z k ( E , F ) � X � F . Tianyi Shi (Cornell) Compressible tensors June 28, 2019 9 / 17

  17. Zolotarev number [Zolotarev, 1877] sup z ∈ E | r ( z ) | Z k ( E , F ) := inf inf z ∈ F | r ( z ) | , k ≥ 0 , r ∈R k , k E and F are disjoint complex sets and R k , k is the set of irreducible rational functions of the form p ( x ) / q ( x ) with polynomials p and q of degree at most k . Tianyi Shi (Cornell) Compressible tensors June 28, 2019 10 / 17

  18. Zolotarev number [Zolotarev, 1877] sup z ∈ E | r ( z ) | Z k ( E , F ) := inf inf z ∈ F | r ( z ) | , k ≥ 0 , r ∈R k , k E and F are disjoint complex sets and R k , k is the set of irreducible rational functions of the form p ( x ) / q ( x ) with polynomials p and q of degree at most k . Im E 1 Re F 1

  19. Zolotarev number [Zolotarev, 1877] sup z ∈ E | r ( z ) | Z k ( E , F ) := inf inf z ∈ F | r ( z ) | , k ≥ 0 , r ∈R k , k E and F are disjoint complex sets and R k , k is the set of irreducible rational functions of the form p ( x ) / q ( x ) with polynomials p and q of degree at most k . Im E 1 F 2 E 2 Re F 1 Tianyi Shi (Cornell) Compressible tensors June 28, 2019 10 / 17

  20. Rank bound of tensors with displacement structure Minkowski sum separated For normal matrices A (1) , A (2) , A (3) , and disjoint sets E j and F j , Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 . Tianyi Shi (Cornell) Compressible tensors June 28, 2019 11 / 17

  21. Minkowski sum separated Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . Tianyi Shi (Cornell) Compressible tensors June 28, 2019 12 / 17

  22. Minkowski sum separated Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . � A (3) � Λ Im × × × × A (1) � � Λ × × × × × × × × × × × � A (2) � Λ Re

  23. Minkowski sum separated Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . � A (3) � Λ Im × × × × A (1) � � Λ × × × × × × × E 1 × × × × × × × × × � A (2) � Λ Re

  24. Minkowski sum separated Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . � A (3) � Λ Im × × × × A (1) � � Λ × × × × × × × E 1 × × × × × × × × × � A (2) � Λ Re F 1

  25. Minkowski sum separated Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . � � A (3) � A (3) � Λ Λ Im × × × × × × × × A (1) � � Λ × × E 2 × × × × × × × × E 1 × × × × × × × × × × × × � � A (2) � A (2) � Λ Λ Re F 1

  26. Minkowski sum separated Λ( A (1) ) ⊆ E 1 , − (Λ( A (2) ) + Λ( A (3) )) ⊆ F 1 , E 1 ∩ F 1 = ∅ , Λ( A (1) ) + Λ( A (2) ) ⊆ E 2 , − Λ( A (3) ) ⊆ F 2 , E 2 ∩ F 2 = ∅ . � � A (3) � A (3) � Λ Λ Im × × × × × × × × A (1) � � Λ × × E 2 × × × × × × × × E 1 × × × × × × × × × × × × � � A (2) � A (2) � Λ Λ Re F 2 F 1 Tianyi Shi (Cornell) Compressible tensors June 28, 2019 12 / 17

  27. Rank bound of tensors with displacement structure (ctd.) Theorem (S. & Townsend) Suppose X × 1 A (1) + X × 2 A (2) + X × 3 A (3) = G , where A (1) , A (2) , A (3) are Minkowski sum separated with disjoint sets E j and F j for j = 1 , 2 . Then, for a fixed 0 < ǫ < 1 , we have rank TT ( X ) ≤ lex (1 , k 1 ν 1 , k 2 ν 2 , 1) , ν j = rank ( G j ) , j = 1 , 2 , ǫ √ where G j is the jth unfolding of G and k j is an integer so that Z k j ( E j , F j ) ≤ ǫ/ 3 . Tianyi Shi (Cornell) Compressible tensors June 28, 2019 13 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend