what is v ar v alue at risk is the loss whi h is ex eeded
play

- What is V aR? - V alue at Risk is the loss, whih is - PowerPoint PPT Presentation

- Qualit y of V alue-at-Risk App ro ximations b y Numerial Solutions of SDEs - Denis T ala y and Ziyu Zheng This w o rk is a joint ollab o ration b et w een the RiskLab and INRIA Sophia Antip olis.


  1. - Qualit y of V alue-at-Risk App ro ximations b y Numeri al Solutions of SDEs - Denis T ala y and Ziyu Zheng This w o rk is a joint ollab o ration b et w een the RiskLab and INRIA Sophia Antip olis. (Institut National de Re her he en Info rmatique et en Automatique) RiskLab Risk Da y 2000 :0 Ω

  2. - What is V aR? - V alue at Risk is the loss, whi h is ex eeded with some given p roba- bilit y α , over a given ho rizon. Mathemati ally , V alue at Risk is the quantile of a random va riable, whi h des rib es the p ossible loss in the future. RiskLab Risk Da y 2000 :1 Ω

  3. - A t ypi al example - A �nan ial ma rk et onsists in N + M + 1 se urities: N sto ks, M b onds and an instantaneous riskless saving a ount. An investment a tivit y is mo delled b y a N + M + 2 dimensional sto hasti di�erential equation, whose solution rep resents the p ri es of N sto ks, the p ri es of M b onds, the saving a ount and the w ealth p ro ess X ( · ) of the trader's p o rtfolio. The V aR ( α ) fo r this investment is the la rgest value su h that P ( X ( T ) − X (0) ≤ V aR ( α )) ≤ α. RiskLab Risk Da y 2000 :2 Ω

  4. - Cal ulation of V aR - The b est w a y to al ulate V aR, of ourse, w ould b e to use an analyti fo rmula. F o r a mo del whose o e� ients a re omplex fun tions o r a high di- mensional mo del, it is imp ossible to al ulate the V aR expli itly . Solution: App ro ximate the V aR b y numeri al metho ds. RiskLab Risk Da y 2000 :3 Ω

  5. - Evaluating existing metho ds - When one ho oses a numeri al metho d fo r V aR al ulation, one has to mak e a tradeo� b et w een a ura y , numeri al ost and generalit y . W e give some omments on some standa rd metho ds. Delta metho d, Delta-gamma metho d and related metho ds a re fast but not very a urate, and they require a simple mo del (whi h de- reases the global a ura y). F ull Monte Ca rlo metho d gives a b etter a ura y , but it requires exa t p ri ing fo rmula (whi h restri ts the hoi e of the mo dels), and is time- onsuming. RiskLab Risk Da y 2000 :4 Ω

  6. - Evaluating existing metho ds ( ont.) - The Grid Monte Ca rlo metho d gives go o d a ura y and an b e applied to general nonlinea r mo dels, but w e re ommend it fo r lo w dimensional p roblems only , fo r a p o rtfolio with a la rge numb er of se urities, the numeri al ost is very exp ensive. RiskLab Risk Da y 2000 :5 Ω

  7. - What is the suitable numeri al metho d to al ulate V aR? - Ma y w e �nd a new metho d, whi h is a urate, an b e applied to general nonlinea r and high dimensional mo dels, and to long-term risk measurement p roblems? W e emphasize that, in the sto hasti mo del as ab ove, The V aR under interest is the quantile of the ma rginal distribution of the solution at ho rizon T to a sto hasti di�erential equation. Thus the p roblem is: �nd a suitable numeri al metho d to app ro ximate su h quantiles. RiskLab Risk Da y 2000 :6 Ω

  8. - The answ er - The Monte Ca rlo metho d. + The Euler s heme. RiskLab Risk Da y 2000 :7 Ω

  9. - What is the Euler s heme? - Let ( X t ) b e a real valued di�usion p ro ess, solution to dX t = b ( X t ) dt + σ ( X t ) dW t , where ( W t ) is a r -dimensional Bro wnian motion. The Euler s heme is a time dis retization of the SDE: pT/n ) T X n ( p +1) T/n = X n pT/n + b ( X n n + σ ( X n pT/n )( W ( p +1) T/n − W pT/n ) . n is the numb er of steps of the dis retization and p = 0 , 1 ,...,n − 1 . X n is a go o d app ro ximation of X T . T RiskLab Risk Da y 2000 :8 Ω

  10. - What is the Monte Ca rlo metho d? - of X n The la w is to o omplex to al ulate expli itly . T of X n W e use N i.i.d. opies to app ro ximate E [ f ( X T )] . T N 1 f ( X n,i � T ) → E [ f ( X T )] , as n,N → ∞ . N i =1 The left hand side an b e easily simulated on a omputer: one simply has to simulate the indep endent Gaussian in rements of the Bro wnian motion. RiskLab Risk Da y 2000 :9 Ω

  11. - The dis retization erro r - Under hyp otheses of unifo rmly hyp o ellipti it y t yp e, X T has a smo oth densit y p X T . Therefo re given a p ositive real 0 < δ < 1 , there exists a quantile ρ ( δ ) su h that P [ X T ≤ ρ ( δ )] = δ. s heme, X n F o r the molli�ed Euler also has a smo oth densit y , thus T quantile ρ n ( δ ) there exists a su h that P [ X n T ≤ ρ n ( δ )] = δ. RiskLab Risk Da y 2000 :10 Ω

  12. - The dis retization erro r ( ont.) - W e have p roved that the dis retization erro r on the quantile satis�es | ρ n ( δ ) − ρ ( δ ) | ≤ C ( T ) q T ( δ ) n, where q T ( δ ) = y ∈ [ ρ ( δ ) − 1 ,ρ ( δ )+1] p X T ( y ) ≃ p X T ( ρ ( δ )) . inf RiskLab Risk Da y 2000 :11 Ω

  13. - The statisti al erro r - X n,i � � W e an so rt the simulated T ,i = 1 ,...,N , and thus get the empi- quantile ρ n ri al N ( δ ) . The lassi al theo ry tell us that the statisti al erro r is of o rder 1 | ρ n ( δ ) − ρ n N ( δ ) | ∼ √ N . q T ( δ ) RiskLab Risk Da y 2000 :12 Ω

  14. - The global erro r of the metho d - Thus the global erro r of the simulated quantile satis�es C ( T ) + C ( T ) E | ρ ( δ ) − ρ n N ( δ ) | ≤ √ q T ( δ ) n. q T ( δ ) N F o r a p ra ti al use, one needs an a urate lo w er b ound of the den- sit y of X T in o rder to ho ose n,N in terms of the desired a ura y . F o r stri tly unifo rm ellipti generato rs, see, e.g., Azen ott. In dege- nerate ase, under restri tive assumption on the drift b , see Kusuok a & Stro o k. RiskLab Risk Da y 2000 :13 Ω

  15. - The ase of high dimension and ma rginal la w - a R d Let ( X t ) b e valued p ro ess, solution to dX t = b ( X t ) dt + σ ( X t ) dW t . y ( X i Denote b t ) the o o rdinate p ro ess of ( X t ) . Supp ose the generato r quantile ρ i ( δ ) of ( X t ) is unifo rmly hyp o ellipti , then there exists a su h that P [ X i T ≤ ρ i ( δ )] = δ. quantile ρ n,i ( δ ) and a of the Euler s heme su h that P [ X n,i ≤ ρ n,i ( δ )] = δ. T RiskLab Risk Da y 2000 :14 Ω

  16. - The ase of a ma rginal la w ( ont.) - W e have p roved | ρ n,i ( δ ) − ρ i ( δ ) | ≤ C ( T ) T ( δ ) n. q i q i p i X T ( y ) ≃ p i X T ( ρ i ( δ )) , T ( δ ) = inf y ∈ [ ρ i ( δ ) − 1 ,ρ i ( δ )+1] where p i is the i -th ma rginal distribution of X T . X T W e re all that the situation here is exa tly the one w e gave in the example fo r the p o rtfolio of N + M + 1 se urities. RiskLab Risk Da y 2000 :15 Ω

  17. - Con lusion - W e on lude b y listing some p rop erties of our numeri al app roa h: 1. A desired a ura y an b e a hieved b y ho osing N and n p rop erly . 2.Our erro r estimates hold fo r hyp o ellipti SDE, whi h is a ommon situation in �nan e. 3. The numeri al ost gro ws only linea rly w.r.t the dimension. Mo reo- ver, the numeri al ost an b e redu ed b y using pa rallel a r hite tures. 4. It an b e applied to long term risk measurement p roblems. RiskLab Risk Da y 2000 :16 Ω

  18. - An appli ation to Mo del Risk measurement - maturities: T O < T Given t w o . y T O The trader w ants to hedge a Europ ean option with maturit written on a dis ount b ond B ( t,T ) . The pa y o� at maturit y is y Φ( B ( T O ,T )) denoted b . The trader uses t w o b onds to hedge the option: the b ond with y T O maturit and the b ond of maturit y T . RiskLab Risk Da y 2000 :17 Ω

  19. - The Heath-Ja rro w-Mo rton mo del - Instantaneous fo rw a rd rate under the sp ot ma rtingale measure: � t � t f ( t,T ∗ ) = f (0 ,T ∗ ) + 0 σ ( s,T ∗ ) σ ∗ ( s,T ∗ ) ds + 0 σ ( s,T ∗ ) dW s , with � T ∗ σ ∗ ( s,T ∗ ) := σ ( s,u ) du. s Dis ount b ond p ri e B ( t,T ) : � T � T σ ∗ ( s,T ) B ( s,T ) dW s , 0 ≤ t ≤ T. B ( t,T ) = 1 − r ( s ) B ( s,T ) ds + t t RiskLab Risk Da y 2000 :18 Ω

  20. - The p o rtfolio - The p o rtfolio V t = H t B ( t,T ) + H O t B ( t,T O ) . Assumption: The p o rtfolio is self-�nan ing, i.e., � t � t 0 H O s dB ( s,T O ) . V t = V 0 + 0 H s dB ( s,T ) + RiskLab Risk Da y 2000 :19 Ω

  21. - The fo rw a rd p ri es of the b ond and of the p o rtfolio - F o rw a rd p ri e of the b ond: B F ( t,T ) := B ( t,T ) B ( t,T O ) . F o rw a rd p ri e of the p o rtfolio: B ( t,T O ) = H t B ( t,T ) + H O t B ( t,T O ) V t V F := . t B ( t,T O ) F rom the self-�nan ing ondition = H t dB F ( t,T ) . dV F t RiskLab Risk Da y 2000 :20 Ω

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend