the top ology of the p ermutation pattern p oset eina r
play

The top ology of the p ermutation pattern p oset Eina r - PowerPoint PPT Presentation

The top ology of the p ermutation pattern p oset Eina r Steingrmsson Universit y of Strathlyde W o rk b y Jason P . Smith and joint w o rk with P eter MNama ra and with A. Burstein, V. Jelnek and E.


  1. • • • • • • • • • • • • • • • • • • • • • • • • Shellable omplex Nonshellable omplex • • • • • • • • X • • • • • • • • 40

  2. • • • • • • • • • • • • • • • • • • • • • • • • Shellable omplex Nonshellable omplex • • • • • • • • X • • • • • • • • 41

  3. • • • • • • • • • • • • • • • • • • • • • • • • Shellable omplex Nonshellable omplex • µ ( σ , τ ) of ∆(( σ , τ )) equals redu ed Euler ha ra teristi • A shellable omplex is homotopi ally a w edge of spheres . • Its redu ed Euler ha ra teristi is the numb er of spheres. • It has nontrivial homology at most in the top dimension. 42

  4. Jason Smith (2014) If σ and τ Theo rem: have the same numb er of des ents, then µ ( σ, τ ) = ( − 1) | τ |−| σ | N ( σ, τ ) , where N ( σ, τ ) of σ in τ is the numb er of no rmal o urren es . Therefo re, | µ ( σ, τ ) | � σ ( τ ) , where σ ( τ ) of σ in τ is the numb er of o urren es . interval [ σ, τ ] And, the is shellable. Pro of: Bije t to sub w o rd o rder and use Bj� rner's results (1988). 43

  5. Jason Smith (2014) If σ and τ Theo rem: have the same numb er of des ents, then µ ( σ, τ ) = ( − 1) | τ |−| σ | N ( σ, τ ) , where N ( σ, τ ) of σ in τ is the numb er of no rmal o urren es . Therefo re, | µ ( σ, τ ) | � σ ( τ ) , where σ ( τ ) of σ in τ is the numb er of o urren es . interval [ σ, τ ] And, the is shellable. Let π Theo rem: b e any p ermutation with a segment of three onse utive numb ers in de reasing o r in reasing o rder. Then µ (1 , π ) = 0 . 44

  6. Jason Smith (2014) If σ and τ Theo rem: have the same numb er of des ents, then µ ( σ, τ ) = ( − 1) | τ |−| σ | N ( σ, τ ) , where N ( σ, τ ) of σ in τ is the numb er of no rmal o urren es . Therefo re, | µ ( σ, τ ) | � σ ( τ ) , where σ ( τ ) of σ in τ is the numb er of o urren es . interval [ σ, τ ] And, the is shellable. Let π Theo rem: b e any p ermutation with a segment of three onse utive numb ers in de reasing o r in reasing o rder. Then µ (1 , π ) = 0 . µ (1 , 71654823) = 0 45

  7. Jason Smith (2014) If σ and τ Theo rem: have the same numb er of des ents, then µ ( σ, τ ) = ( − 1) | τ |−| σ | N ( σ, τ ) , where N ( σ, τ ) of σ in τ is the numb er of no rmal o urren es . Therefo re, | µ ( σ, τ ) | � σ ( τ ) , where σ ( τ ) of σ in τ is the numb er of o urren es . interval [ σ, τ ] And, the is shellable. Let π Theo rem: b e any p ermutation with a segment of three onse utive numb ers in de reasing o r in reasing o rder. Then µ (1 , π ) = 0 . interval [1 , π ] In fa t, the is ontra tible. 46

  8. Jason Smith (2014) If σ and τ Theo rem: have the same numb er of des ents, then µ ( σ, τ ) = ( − 1) | τ |−| σ | N ( σ, τ ) , where N ( σ, τ ) of σ in τ is the numb er of no rmal o urren es . Therefo re, | µ ( σ, τ ) | � σ ( τ ) , where σ ( τ ) of σ in τ is the numb er of o urren es . interval [ σ, τ ] And, the is shellable. There a re results/ onje tures analogous to the ab ove fo r the la y ered and sepa rable p ermutations. 47

  9. Sagan-V atter (2005): M�bius fun tion fo r la y ered p ermutations 48

  10. Sagan-V atter (2005): M�bius fun tion fo r la y ered p ermutations 3 2 1 5 4 6 8 7 49

  11. Sagan-V atter (2005): M�bius fun tion fo r la y ered p ermutations 3 2 1 5 4 6 8 7 50

  12. Sagan-V atter (2005): M�bius fun tion fo r la y ered p ermutations 3 2 1 5 4 6 8 7 A la y ered p ermutation is a on atenation of de reasing se- quen es, ea h smaller than the next. 51

  13. Sagan-V atter (2005): M�bius fun tion fo r la y ered p ermutations • • • • • • • • 3 2 1 5 4 6 8 7 A la y ered p ermutation is a on atenation of de reasing se- quen es, ea h smaller than the next. 52

  14. Sagan-V atter (2005): M�bius fun tion fo r la y ered p ermutations • • • • • • • • 3 2 1 5 4 6 8 7 53

  15. Sagan-V atter (2005): M�bius fun tion fo r la y ered p ermutations • • • • • • • • 3 2 1 5 4 6 8 7 (Any subsequen e of a la y ered p ermutation is la y ered) 54

  16. Sagan-V atter (2005): M�bius fun tion fo r la y ered p ermutations • • • • • • • • 3 2 1 5 4 6 8 7 An e�e tive fo rmula, but to o long to �t inside these ma rgins . . . 55

  17. Sagan-V atter (2005): M�bius fun tion fo r la y ered p ermutations • • • • • • • • 3 2 1 5 4 6 8 7 An e�e tive fo rmula, but to o long to �t inside these ma rgins . . . (Simila r to p ermutations with �xed numb er of des ents) 56

  18. Sagan-V atter (2005): M�bius fun tion fo r la y ered p ermutations • • • • • • • • 3 2 1 5 4 6 8 7 A sp e ial ase of the sepa rable p ermutations. 57

  19. • • • • • • • • 4 2 3 5 1 7 8 6 58

  20. • • • • • • • • 4 2 3 5 1 7 8 6 59

  21. • • • • • • • • 4 2 3 5 1 7 8 6 A de omp osable p ermutation is a dire t sum 42351786 = 42351 ⊕ 231 60

  22. • • • • • • • • • • • • • • • • 4 2 3 5 1 7 8 6 A de omp osable p ermutation A sk ew-de omp osable is a dire t sum p ermutation is a sk ew sum 42351786 = 42351 ⊕ 231 76841325 = 213 ⊖ 41325 61

  23. • A p ermutation is sepa rable if • it an b e generated from 1 b y • dire t sums and sk ew sums. • • • • • 4 2 3 5 1 7 8 6 62

  24. • A p ermutation is sepa rable if • it an b e generated from 1 b y • dire t sums and sk ew sums. • • • • • 4 2 3 5 1 7 8 6 63

  25. • A p ermutation is sepa rable if • it an b e generated from 1 b y • dire t sums and sk ew sums. • • • • • 4 2 3 5 1 7 8 6 64

  26. • A p ermutation is sepa rable if • it an b e generated from 1 b y • dire t sums and sk ew sums. • • • • • 4 2 3 5 1 7 8 6 65

  27. • A p ermutation is sepa rable if • it an b e generated from 1 b y • dire t sums and sk ew sums. • • • • • 4 2 3 5 1 7 8 6 66

  28. • A p ermutation is sepa rable if • it an b e generated from 1 b y • dire t sums and sk ew sums. • • • • • 4 2 3 5 1 7 8 6 67

  29. • A p ermutation is sepa rable if • it an b e generated from 1 b y • dire t sums and sk ew sums. • • • • • 4 2 3 5 1 7 8 6 68

  30. • A p ermutation is sepa rable if • it an b e generated from 1 b y • dire t sums and sk ew sums. • • • • • 4 2 3 5 1 7 8 6 Sepa rable 69

  31. • A p ermutation is sepa rable if • it an b e generated from 1 b y • dire t sums and sk ew sums. • • De omp oses b y sk ew/dire t • sums into singletons • • 4 2 3 5 1 7 8 6 Sepa rable 70

  32. • A p ermutation is sepa rable if • it an b e generated from 1 b y • dire t sums and sk ew sums. • • De omp oses b y sk ew/dire t • sums into singletons • • 4 2 3 5 1 7 8 6 Sepa rable A p ermutation is sepa rable if and only if it avoids the pat- terns 2413 and 3142. 71

  33. • A p ermutation is sepa rable if • it an b e generated from 1 b y • dire t sums and sk ew sums. • • De omp oses b y sk ew/dire t • sums into singletons • • 4 2 3 5 1 7 8 6 Sepa rable A p ermutation is sepa rable if • and only if it avoids the pat- • terns 2413 and 3142. • • 2 4 1 3 Not sepa rable 72

  34. Burstein, Jel�nek, Jel�nk ov�, Steingr�msson: If σ and τ Theo rem: a re sepa rable p ermutations, then � µ ( σ , τ ) = � 1) parity(X) ( X ∈OP of σ in τ where the sum is over unpaired o urren es . 73

  35. Burstein, Jel�nek, Jel�nk ov�, Steingr�msson: If σ and τ Theo rem: a re sepa rable p ermutations, then � µ ( σ , τ ) = � 1) parity(X) ( X ∈OP of σ in τ where the sum is over unpaired o urren es . 74

  36. Li − → Nan L Sagan − → Bru e S 75

  37. Li − → Nan L Sagan − → Bru e S E. Babson, A. Bj� rner, L, V. W elk er, J. Sha reshian 76

  38. Li − → Nan L Sagan − → Bru e S 77

  39. Li − → Nan L Sagan − → Bru e S Billera − → Lou B 78

  40. Li − → Nan L Sagan − → Bru e S Billera − → Lou B a hs − → Mi helle W MW 79

  41. Li − → Nan L Sagan − → Bru e S Billera − → Lou B a hs − → Mi helle W MW ra − → P eter M Nama M N 80

  42. Li − → Nan L Sagan − → Bru e S Billera − → Lou B a hs − → Mi helle W MW ra − → P eter M Nama M N Abb reviating y our last name to a single letter implies every- b o dy should rememb er y our name. 81

  43. Li − → Nan L Sagan − → Bru e S Billera − → Lou B a hs − → Mi helle W MW ra − → P eter M Nama M N Abb reviating y our last name to a single letter implies every- b o dy should rememb er y our name. Let's put an end to this immo dest y! 82

  44. Li − → Nan L Sagan − → Bru e S Billera − → Lou B a hs − → Mi helle W MW ra − → P eter M Nama M N Abb reviating y our last name to a single letter implies every- b o dy should rememb er y our name. Let's put an end to this immo dest y! (Unless y our name is Central Ship y a rd, in whi h ase y ou ma y b e fo rgiven) 83

  45. Burstein, Jel�nek, Jel�nk ov�, Steingr�msson: If σ and τ Theo rem: a re sepa rable p ermutations, then � µ ( σ , τ ) = � 1) parity(X) ( X ∈OP of σ in τ where the sum is over unpaired o urren es . 84

  46. Burstein, Jel�nek, Jel�nk ov�, Steingr�msson: If σ and τ Theo rem: a re sepa rable p ermutations, then � µ ( σ , τ ) = � 1) parity(X) ( X ∈OP of σ in τ where the sum is over unpaired o urren es . omputes µ ( σ , τ ) (This in p olynomial time) 85

  47. Burstein, Jel�nek, Jel�nk ov�, Steingr�msson: If σ and τ Theo rem: a re sepa rable p ermutations, then � µ ( σ , τ ) = � 1) parity(X) ( X ∈OP of σ in τ where the sum is over unpaired o urren es . If σ and τ Co rolla ry: a re sepa rable then | µ ( σ , τ ) | � σ ( τ ) where σ ( τ ) of σ in τ is the numb er of o urren es . 86

  48. Burstein, Jel�nek, Jel�nk ov�, Steingr�msson: If σ and τ Theo rem: a re sepa rable p ermutations, then � µ ( σ , τ ) = � 1) parity(X) ( X ∈OP of σ in τ where the sum is over unpaired o urren es . If σ and τ Co rolla ry: a re sepa rable then | µ ( σ , τ ) | � σ ( τ ) where σ ( τ ) of σ in τ is the numb er of o urren es . (A generalization of a onje ture of T enner and Steingr�ms- son) 87

  49. Burstein, Jel�nek, Jel�nk ov�, Steingr�msson: If σ and τ Theo rem: a re sepa rable p ermutations, then � µ ( σ , τ ) = � 1) parity(X) ( X ∈OP of σ in τ where the sum is over unpaired o urren es . If σ and τ Co rolla ry: a re sepa rable then | µ ( σ , τ ) | � σ ( τ ) where σ ( τ ) of σ in τ is the numb er of o urren es . � n + k − 1 � µ (135 . . . (2 k - 1) (2 k ) . . . 42 , 135 . . . (2 n -1 ) (2 n ) . . . 42) = n − k 88

  50. Burstein, Jel�nek, Jel�nk ov�, Steingr�msson: If σ and τ Theo rem: a re sepa rable p ermutations, then � µ ( σ , τ ) = � 1) parity(X) ( X ∈OP of σ in τ where the sum is over unpaired o urren es . If σ and τ Co rolla ry: a re sepa rable then | µ ( σ , τ ) | � σ ( τ ) where σ ( τ ) of σ in τ is the numb er of o urren es . � 8 / 2+4 / 2 − 1 � � 5 � µ (1342 , 13578642) = = 8 / 2 − 4 / 2 2 89

  51. Burstein, Jel�nek, Jel�nk ov�, Steingr�msson: If σ and τ Theo rem: a re sepa rable p ermutations, then � µ ( σ , τ ) = � 1) parity(X) ( X ∈OP of σ in τ where the sum is over unpaired o urren es . If σ and τ Co rolla ry: a re sepa rable then | µ ( σ , τ ) | � σ ( τ ) where σ ( τ ) of σ in τ is the numb er of o urren es . then µ ( If τ 1 , τ ) ∈ { 0 , 1 , − 1 } . Co rolla ry: is sepa rable, 90

  52. Burstein, Jel�nek, Jel�nk ov�, Steingr�msson: If σ and τ Theo rem: a re sepa rable p ermutations, then � µ ( σ , τ ) = � 1) parity(X) ( X ∈OP of σ in τ where the sum is over unpaired o urren es . If σ and τ Co rolla ry: a re sepa rable then | µ ( σ , τ ) | � σ ( τ ) where σ ( τ ) of σ in τ is the numb er of o urren es . then µ ( If τ 1 , τ ) ∈ { 0 , 1 , − 1 } . Co rolla ry: is sepa rable, Neither o rolla ry true in general 91

  53. La y ered intervals and �xed-des intervals a re isomo rphi to t w o extremes in the Generalized sub w o rd o rder (determined oset P b y a p ) of Sagan and V atter. 92

  54. La y ered intervals and �xed-des intervals a re isomo rphi to t w o extremes in the Generalized sub w o rd o rder (determined oset P b y a p ) of Sagan and V atter. P anti hain: · · · 1 2 3 4 • • • • · · · 1344 � P 113414 1343 � � P 113414 93

  55. La y ered intervals and �xed-des intervals a re isomo rphi to t w o extremes in the Generalized sub w o rd o rder (determined oset P b y a p ) of Sagan and V atter. P anti hain: · · · 1 2 3 4 • • • • · · · 1344 � P 113414 1343 � � P 113414 94

  56. La y ered intervals and �xed-des intervals a re isomo rphi to t w o extremes in the Generalized sub w o rd o rder (determined oset P b y a p ) of Sagan and V atter. P P hain: anti hain: . . · · · 1 2 3 4 . • 4 • • • • · · · • 3 • 2 1344 � P 113414 • 1 1343 � � P 113414 1343 � P 113414 95

  57. La y ered intervals and �xed-des intervals a re isomo rphi to t w o extremes in the Generalized sub w o rd o rder (determined oset P b y a p ) of Sagan and V atter. P P hain: anti hain: . . · · · 1 2 3 4 . • 4 • • • • · · · • 3 • 2 1344 � P 113414 • 1 ( 3 < P 4 1343 � � P 113414 1343 � P 113414 ) 96

  58. La y ered intervals and �xed-des intervals a re isomo rphi to t w o extremes in the Generalized sub w o rd o rder (determined oset P b y a p ) of Sagan and V atter. P P hain: anti hain: . . · · · 1 2 3 4 . • 4 • • • • · · · • 3 • 2 1344 � P 113414 • 1 1343 � � P 113414 1343 � P 113414 Fixed-des La y ered 97

  59. La y ered intervals and �xed-des intervals a re isomo rphi to t w o extremes in the Generalized sub w o rd o rder (determined oset P b y a p ) of Sagan and V atter. P P hain: anti hain: . . · · · 1 2 3 4 . • 4 • • • • · · · • 3 • 2 1344 � P 113414 • 1 1343 � � P 113414 1343 � P 113414 Fixed-des La y ered Is there a family of intervals of p ermutations interp olating b et w een these t w o extremes (that a re shellable, o r at least with a tra table M�bius fun tion)? 98

  60. M Nama ra-Steingr�msson (refo rmulation of BJJS): Let τ = τ 1 ⊕ · · · ⊕ τ k Theo rem: b e �nest de omp osition. Then � � µ ( σ , τ ) = µ ( σ m , τ m ) + ǫ m σ = σ 1 ⊕ ... ⊕ σ k m  if σ m = ∅ and τ m − 1 = τ m  1 , ǫ m =  where 0 , else 99

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend