fairness risk measures fairness risk measures
play

FAIRNESS RISK MEASURES FAIRNESS RISK MEASURES Robert C. Williamson - PowerPoint PPT Presentation

FAIRNESS RISK MEASURES FAIRNESS RISK MEASURES Robert C. Williamson Aditya Menon LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES Walds abstraction: a loss function : Y A + {+


  1. FAIRNESS RISK MEASURES

  2. FAIRNESS RISK MEASURES Robert C. Williamson Aditya Menon

  3. LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES

  4. LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label 
 Action 
 space space

  5. LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label 
 Action 
 space space ▸ is an outcome contingent utility a ↦ ℓ ( y , a )

  6. LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label 
 Action 
 space space ▸ is an outcome contingent utility a ↦ ℓ ( y , a ) ▸ Learning goal: expected risk minimisation min f ∈ℱ 𝔽 ( 𝖸 , 𝖹 ) ∼ P ℓ ( 𝖹 , f ( 𝖸 ))

  7. LOSS FUNCTIONS - OUTCOME CONTINGENT UTILITIES ▸ Wald’s abstraction: a loss function ℓ : Y × A → ℝ + ∪ {+ ∞ } =: ℝ Label 
 Action 
 space space ▸ is an outcome contingent utility a ↦ ℓ ( y , a ) ▸ Learning goal: expected risk minimisation min f ∈ℱ 𝔽 ( 𝖸 , 𝖹 ) ∼ P ℓ ( 𝖹 , f ( 𝖸 )) ▸ In practice: empirical risk minimisation min f ∈ℱ 𝔽 ( 𝖸 , 𝖹 ) ∼ P m ℓ ( 𝖹 , f ( 𝖸 )) m 1 ∑ = min ℓ ( y i , f ( x i )) m f ∈ℱ i =1

  8. MINIMISING EMPIRICAL RISK

  9. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS

  10. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F1 F1

  11. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F2 F2

  12. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F3 F3

  13. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F4 F4

  14. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F5 F5

  15. MINIMISING EMPIRICAL RISK 200 200 150 150 Loss 100 100 Average 
 loss of 
 50 50 best 
 hypothesis 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F5 F5

  16. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE

  17. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS

  18. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F1 F1

  19. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F2 F2

  20. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F3 F3

  21. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F4 F4

  22. MINIMISING EMPIRICAL RISK WITH SENSITIVE ATTRIBUTES VISIBLE 200 200 150 150 Loss 100 100 Average 
 loss of 
 50 50 best 
 hypothesis 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 Data index HYPOTHESIS F5 F5

  23. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE

  24. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9

  25. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F1 F1

  26. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F2 F2

  27. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F3 F3

  28. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F4 F4

  29. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 Average 
 loss of 
 50 50 best 
 hypothesis 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5

  30. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 Average 
 loss of 
 50 50 best 
 hypothesis 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5

  31. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 Average 
 loss of 
 50 50 best 
 hypothesis 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5

  32. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 HYPOTHESIS F5 F5

  33. MINIMISING EMPIRICAL RISK REINDEXING PER SENSITIVE ATTRIBUTE 200 200 150 150 Loss 100 100 50 50 0 0 1 2 3 1 1 4 4 7 7 10 10 2 2 6 6 8 8 3 3 5 5 9 9 Sensitive 
 Feature index HYPOTHESIS F5 F5

  34. MINIMISING AGGREGATED EMPIRICAL RISK

  35. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index HYPOTHESIS

  36. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F1 F1 HYPOTHESIS

  37. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F2 F2 HYPOTHESIS

  38. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F3 F3 HYPOTHESIS

  39. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F4 F4 HYPOTHESIS

  40. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS

  41. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 ▸ Standard problem: minimise average risk 150 150 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS

  42. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 ▸ Standard problem: minimise average risk 150 150 ▸ Equity problem: also take account of variation 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS

  43. MINIMISING AGGREGATED EMPIRICAL RISK 200 200 ▸ Standard problem: minimise average risk 150 150 ▸ Equity problem: also take account of variation Loss ▸ Fairness problem: mixture of both 100 100 50 50 0 0 Sensitive 
 1 1 2 2 3 3 Feature index F5 F5 HYPOTHESIS

  44. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION

  45. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION ▸ Trade off low deviation against higher average

  46. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 40 40 Loss 20 20 0 0 1 1 2 2 3 3

  47. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 40 40 Loss 20 20 0 0 1 1 2 2 3 3 F5 F5

  48. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 40 40 Loss 20 20 0 0 1 1 2 2 3 3 F6 F6

  49. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 ▸ Let be the sensitive feature space S = {1,2,3} 40 40 Loss 20 20 0 0 1 1 2 2 3 3 F6 F6

  50. MINIMISING AGGREGATED EMPIRICAL RISK AND DEVIATION 80 80 ▸ Trade off low deviation against higher average 60 60 ▸ Let be the sensitive feature space S = {1,2,3} ▸ For let be a r.v. (taking as the 𝖲 f : S → ℝ f ∈ ℱ S 40 40 sample space, with a uniform base measure) Loss 20 20 𝖲 f : S ∋ s ↦ 𝔽 ( 𝖸 , 𝖹 ) [ ℓ ( 𝖹 , f ( 𝖸 )) | 𝖳 = s ] 0 0 1 1 2 2 3 3 F6 F6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend