what is a hydrogen bond
play

What is a Hydrogen Bond? The Need for a Quantum-mechanically - PDF document

When is a Hydrogen Bond not a Hydrogen Bond? What is a Hydrogen Bond? The Need for a Quantum-mechanically Consistent Definition University of Kentucky, Lexington KY 20-21 October 2003 Roger A. Klein Institute for Physiological Chemistry


  1. When is a Hydrogen Bond not a Hydrogen Bond? What is a Hydrogen Bond? The Need for a Quantum-mechanically Consistent Definition University of Kentucky, Lexington KY 20-21 October 2003 Roger A. Klein Institute for Physiological Chemistry Medical Faculty University of Bonn, Germany R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 What is a Hydrogen Bond? Importance of Hydrogen Bonding ■ liquid water and ice - protic solvents ■ the interaction between an electron-deficient hydrogen atom with a centre of relative electron ■ solution structure and hydration shell - ionic excess, e.g., electronegative atoms such as F, N, or and non-ionic solutes O, or with a π -electron cloud ■ protein folding ■ Morokuma decomposition: electrostatic (65%), ■ purine/pyrimidine (GC/AT(U)) base-pairing polarisation (24%) and charge-transfer (11%) for water dimer - Mó et al. [2000] in nucleic acids ■ electrostatic / covalent resonance hydrid (Pauling) - ■ chemical and enzymatic reactions Isaacs et al. [1999] R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Monomeric water Properties of the Group VI Hydrides 150 100 °C 50 MW FPt. 0 BPt. -50 -100 H2O H2S H2Se H2Te R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 1

  2. Isaacs; Shukla; Platzmann; Hamann; Barbiellini; Tulk; Phys. Rev. Lett. 1999 , 82, 600 Isaacs; Shukla; Platzmann; Hamann; Barbiellini; Tulk; Phys. Rev. Lett. 1999 , 82, 600 Ice I R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Weak Hydrogen Bonds ==>> Strong Hydrogen Bonds (VDW complexes) ( cis -enols) Nitromalonamide enol ...... CF 3 H.....H 2 O TS CH 4 .....H 2 O R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Hydrogen-Bonding ■ Acceptor-Donor -H...A- – typically -H...O- or -H...N- ■ Geometry dependent – (a) -H...A-X angle – (b) -H...A- distance ■ dielectric constant ■ partially electrostatic, partially covalent ■ long-range (1/r) from Desiraju, G.R.; Steiner, T. (1999) R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 2

  3. Topological criteria (AIM Theory) Electron Density Topology (AIM) ■ BCP with δρ δρ (r) =0 and δρ δρ ■ H D net positive charge (3,-1) topology; increased ■ 0.002 0.002 0.002<ρ 0.002 ρ ρ ρ (r) <0.040 ■ energetically destabilised ■ Laplacian of ρ ρ ρ (r) , L ρ L 2 ρ ρ ρ ρ (r) , ■ decreased dipolar L L > 0 and in range 0.015- polarisation 0.150 a.u. ■ reduction in atomic ■ mutual penetration volume R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Electron Density Topology (AIM) Why Glycol-Water Systems? ■ Modelling hydration of carbohydrates ■ Cryoprotectants ■ natural ■ synthetic ■ Hydrogen-bonding in aqueous solution ■ Structuring of water in the presence of solutes R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 4 C 1 -Galactopyranose Diols ■ (n,n+1) Ethane-diol Synthon – 12ED, 23BD ■ (n,n+2) – 13BD, 25PD ■ (n,n+3) – 14BD, 25HD ■ (n,n+4) – 15PD ■ (n,n+5) – 16HD R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 3

  4. Electron Density (12EG) Electron Density (13PG) Ethane-1,2-diol Propane-1,3-diol MPW1PW91/6-311+G(2d,p) 6D 10F MPW1PW91/6-311+G(2d,p) 6D 10F R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Electron Density (14BD) BCP Electron Density and Laplacian Diol L 2 rho rho L L L f(h) ellipt. BCP 12EG -- -- -- -- no Butane-1,4-diol 0.02163 +0.0845 0.3713 0.02293 yes 13PG 14BD 0.03186 +0.1128 0.3479 0.04764 yes 15PD 0.02576 +0.0987 0.3532 0.06160 yes 16HD 0.02282 +0.0802 0.3513 0.02240 yes MPW1PW91/6-311+G(2d,p) 6D 10F R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Atomic Charge Dipolar Polarisation R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 4

  5. Atomic Volume Distance versus Laplacian R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Ethane-1,2-diol / Water Complexes Effect of medium dielectric constant R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Electron Density Electron Density 12EG/H 2 O 12EG/H 2 O confB confC MPW1PW91/6-311+G(2d,p) 6D 10F MPW1PW91/6-311+G(2d,p) 6D 10F R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 5

  6. Diols for -O-H D .....O A -O A ...H D -O- Interaction Energy 9 8 7 6 Energy 5 kcal/mol 4 3 2 1 0 red: D (OH) 1,2-diol 1,3-diol 1,4-diol 1,5-diol 1,6-diol 1:1 (HOH) 1:1 (-OH) 1:1 (bifurc) green: V (CP) blue: CBS-QB3 R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 NMR downfield shift for -O-H D IR red-shift for -O-H D 1.8 2 2.2 1.8 2 2.2 2.4 300 300 5 5 4 4 n = 12 200 200 red-shift (cm-1) 3 3 n = 3 ∆ H PPM n = 8 2 2 100 100 1 1 n = 17 0 0 0 0 1.8 2 2.2 2.4 1.8 2 2.2 2.4 H...O interaction distance (Å) H D ...O A interaction distance R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 α,ω -Diols - NBO Analysis Dipolar polarisation for -O-H D Force constant (N/m) 840 880 920 960 1000 0.18 0.18 Hydrogen µ ( Ω ) - dipolar polarisation 0.16 0.16 0.14 0.14 0.12 0.12 840 880 920 960 1000 R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 6

  7. 2-Haloethanols Glucopyranose 4 C 1 g+ / trans F Cl Br R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Glucopyranose 1 C 4 g+ Van der Waals Radii and Interpenetrability R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Van der Waals Radii VDW Radii ■ Interpenetration limits for hydrogen MPW1PW91/6-311+G(2d,p) bonding based on VDW radii ■ Pauling – O:...H = 1.4 + 1.2 = 2.6 Å – N:...H = 1.5 + 1.2 = 2.7 Å All too high!! ■ Bondi – O:...H = 1.52 + 1.2 = 2.72 Å – N:...H = 1.55 + 1.2 = 2.75 Å ■ Bader / Popelier ρ = 0.001 au (0.002 au) – O:...H = 1.68 + 1.52 = 3.20 Å (2.89 Å) – N:...H = 1.77 + 1.52 = 3.29 Å (2.96 Å) R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 7

  8. VDW Radii - hydrogen bonding O...HO Hydrogen Bonding O...HN and O...HC ■ calculate ρ (r) at donor-acceptor distances based ■ which radius? ■ 0.001 or 0.01 au? R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Modified “VDW” Radii Modified “VDW” Radii ■ with ρ = 0.010 at BCP Atom Bondi Rowland IP Clementi Klein Pauling Roetti – -O:...H- = 2.31 Å (B) (P) r R 0.001 0.002 0.001 0.005 0.010 – -N:...H- = 2.44 Å H 1.20 1.2 1.10 1.09 1.06 1.52 1.34 1.34 0.98 0.82 ■ with ρ = 0.020 at BCP N 1.55 1.5 1.64 1.61 1.36 1.77 1.62 1.81 1.46 1.31 – -O:...H- = 2.02 Å – -N:...H- = 2.13 Å O 1.52 1.40 1.58 1.56 1.27 1.68 1.55 1.68 1.33 1.20 R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 Hydrogen Bond Cooperativity Cooperativity or Non-additive Effects R.A. Klein - Lexington KY, October 2003 R.A. Klein - Lexington KY, October 2003 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend