what do shannon type inequalities submodular width and
play

What do Shannon-type Inequalities, Submodular Width, and - PowerPoint PPT Presentation

What do Shannon-type Inequalities, Submodular Width, and Disjunctive Datalog have to do with one another? Mahmoud Abo Khamis 1 Hung Q. Ngo 1 Dan Suciu 1 , 2 1 LogicBlox Inc. 2 University of Washington PODS 2017 1/22 Contributions A Join


  1. Size Bounds: Input ◮ A full conjunctive query � Q ( A [ n ] ) :- R F ( A F ) F ∈E ◮ A [ n ] = { A 1 , . . . , A n } is the full set of attributes ◮ A F = { A f | f ∈ F ⊆ [ n ] } is a subset ◮ Degree Constraints ( DC ): deg F ( A Y | A X ) ≤ N Y | X , X ⊂ Y ⊆ F ∈ E ◮ Cardinality Constraints ( CC ): | R F | ≤ N F |∅ ◮ Functional Dependencies ( FD ): A X → A Y Bound Idea 6/22

  2. Size Bounds: Input ◮ A full conjunctive query � Q ( A [ n ] ) :- R F ( A F ) F ∈E ◮ A [ n ] = { A 1 , . . . , A n } is the full set of attributes ◮ A F = { A f | f ∈ F ⊆ [ n ] } is a subset ◮ Degree Constraints ( DC ): deg F ( A Y | A X ) ≤ N Y | X , X ⊂ Y ⊆ F ∈ E ◮ Cardinality Constraints ( CC ): | R F | ≤ N F |∅ ◮ Functional Dependencies ( FD ): A X → A Y Bound Idea log | Q | ≤ maximum h ( A 1 , . . . , A n ) 6/22

  3. Size Bounds: Input ◮ A full conjunctive query � Q ( A [ n ] ) :- R F ( A F ) F ∈E ◮ A [ n ] = { A 1 , . . . , A n } is the full set of attributes ◮ A F = { A f | f ∈ F ⊆ [ n ] } is a subset ◮ Degree Constraints ( DC ): deg F ( A Y | A X ) ≤ N Y | X , X ⊂ Y ⊆ F ∈ E ◮ Cardinality Constraints ( CC ): | R F | ≤ N F |∅ ◮ Functional Dependencies ( FD ): A X → A Y Bound Idea log | Q | ≤ maximum h ( A 1 , . . . , A n ) over all entropies h 6/22

  4. Size Bounds: Input ◮ A full conjunctive query � Q ( A [ n ] ) :- R F ( A F ) F ∈E ◮ A [ n ] = { A 1 , . . . , A n } is the full set of attributes ◮ A F = { A f | f ∈ F ⊆ [ n ] } is a subset ◮ Degree Constraints ( DC ): deg F ( A Y | A X ) ≤ N Y | X , X ⊂ Y ⊆ F ∈ E ◮ Cardinality Constraints ( CC ): | R F | ≤ N F |∅ ◮ Functional Dependencies ( FD ): A X → A Y Bound Idea log | Q | ≤ maximum h ( A 1 , . . . , A n ) over all entropies h such that h satisfies degree constraints of Q 6/22

  5. Size Bounds: Preliminaries ◮ HDC is the set of functions h : 2 [ n ] → R + satisfying the degree constraints HDC def � � = h | h ( Y | X ) ≤ log N Y | X , ∀ ( X, Y, N Y | X ) 7/22

  6. Size Bounds: Preliminaries ◮ HDC is the set of functions h : 2 [ n ] → R + satisfying the degree constraints HDC def � � = h | h ( Y | X ) ≤ log N Y | X , ∀ ( X, Y, N Y | X ) ◮ Γ ∗ n is the set of entropic functions 7/22

  7. Size Bounds: Preliminaries ◮ HDC is the set of functions h : 2 [ n ] → R + satisfying the degree constraints HDC def � � = h | h ( Y | X ) ≤ log N Y | X , ∀ ( X, Y, N Y | X ) ◮ Γ ∗ n is the set of entropic functions ∗ n is the topological closure of Γ ∗ ◮ Γ n 7/22

  8. Size Bounds: Preliminaries ◮ HDC is the set of functions h : 2 [ n ] → R + satisfying the degree constraints HDC def � � = h | h ( Y | X ) ≤ log N Y | X , ∀ ( X, Y, N Y | X ) ◮ Γ ∗ n is the set of entropic functions ∗ n is the topological closure of Γ ∗ ◮ Γ n ◮ Γ n is the set of polymatroids , i.e. functions h : 2 [ n ] → R + satisfying h ( X ∪ Y ) + h ( X ∩ Y ) ≤ h ( X ) + h ( Y ) , X, Y ⊆ [ n ] (submodularity) h ( X ) ≤ h ( Y ) , X ⊆ Y ⊆ [ n ] (monotonicity) h ( ∅ ) = 0 (strictness) 7/22

  9. Size Bounds: Preliminaries ◮ HDC is the set of functions h : 2 [ n ] → R + satisfying the degree constraints HDC def � � = h | h ( Y | X ) ≤ log N Y | X , ∀ ( X, Y, N Y | X ) ◮ Γ ∗ n is the set of entropic functions ∗ n is the topological closure of Γ ∗ ◮ Γ n ◮ Γ n is the set of polymatroids , i.e. functions h : 2 [ n ] → R + satisfying h ( X ∪ Y ) + h ( X ∩ Y ) ≤ h ( X ) + h ( Y ) , X, Y ⊆ [ n ] (submodularity) h ( X ) ≤ h ( Y ) , X ⊆ Y ⊆ [ n ] (monotonicity) h ( ∅ ) = 0 (strictness) ∗ Γ ∗ ⊂ Γ ⊂ Γ n n n ���� ���� ���� topological closure of Γ ∗ polymatroids entropic functions n 7/22

  10. Size Bounds for Full Conjunctive Queries ∗ Γ ∗ ⊂ Γ ⊂ Γ n n n ���� ���� ���� topological closure of Γ ∗ polymatroids entropic functions n 8/22

  11. Size Bounds for Full Conjunctive Queries ∗ Γ ∗ ⊂ Γ ⊂ Γ n n n ���� ���� ���� topological closure of Γ ∗ polymatroids entropic functions n Bound Entropic Bound Polymatroid Bound log | Q | ≤ log | Q | ≤ max n ∩ HDC h ([ n ]) h ∈ Γ n ∩ HDC h ([ n ]) max Definition h ∈ Γ ∗ 8/22

  12. Size Bounds for Full Conjunctive Queries ∗ Γ ∗ ⊂ Γ ⊂ Γ n n n ���� ���� ���� topological closure of Γ ∗ polymatroids entropic functions n Bound Entropic Bound Polymatroid Bound log | Q | ≤ log | Q | ≤ max n ∩ HDC h ([ n ]) h ∈ Γ n ∩ HDC h ([ n ]) max Definition h ∈ Γ ∗ AGM bound (Tight) AGM bound (Tight) CC only [Atserias et al. FOCS’08] [Atserias et al. FOCS’08] 8/22

  13. Size Bounds for Full Conjunctive Queries ∗ Γ ∗ ⊂ Γ ⊂ Γ n n n ���� ���� ���� topological closure of Γ ∗ polymatroids entropic functions n Bound Entropic Bound Polymatroid Bound log | Q | ≤ log | Q | ≤ max n ∩ HDC h ([ n ]) h ∈ Γ n ∩ HDC h ([ n ]) max Definition h ∈ Γ ∗ AGM bound (Tight) AGM bound (Tight) CC only [Atserias et al. FOCS’08] [Atserias et al. FOCS’08] Entropic Bound for FD Polymatroid Bound for FD CC + FD only [Gottlob et al. JACM’12] [Gottlob et al. JACM’12] (Tight [Gogacz et al. ICDT’17] ) (Not tight [Our work] ) 8/22

  14. Size Bounds for Full Conjunctive Queries ∗ Γ ∗ ⊂ Γ ⊂ Γ n n n ���� ���� ���� topological closure of Γ ∗ polymatroids entropic functions n Bound Entropic Bound Polymatroid Bound log | Q | ≤ log | Q | ≤ max n ∩ HDC h ([ n ]) h ∈ Γ n ∩ HDC h ([ n ]) max Definition h ∈ Γ ∗ AGM bound (Tight) AGM bound (Tight) CC only [Atserias et al. FOCS’08] [Atserias et al. FOCS’08] Entropic Bound for FD Polymatroid Bound for FD CC + FD only [Gottlob et al. JACM’12] [Gottlob et al. JACM’12] (Tight [Gogacz et al. ICDT’17] ) (Not tight [Our work] ) Entropic Bound for DC Polymatroid Bound for DC DC (Tight [Our work] ) (Not tight [Our work] ) 8/22

  15. Table of Contents Size Bounds for Full Conjunctive Queries Size Bounds for Disjunctive Datalog Algorithms for Disjunctive Datalog Algorithms for Conjunctive Queries 9/22

  16. Disjunctive Datalog � � P : T B ( A B ) :- R F ( A F ) B ∈B F ∈E 10/22

  17. Disjunctive Datalog A 2 R 12 R 23 � � A 1 A 3 P : T B ( A B ) :- R F ( A F ) R 41 R 34 B ∈B F ∈E A 4 P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . 10/22

  18. Disjunctive Datalog A 2 R 12 R 23 � � A 1 A 3 P : T B ( A B ) :- R F ( A F ) R 41 R 34 B ∈B F ∈E A 4 P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . 10/22

  19. Disjunctive Datalog A 2 R 12 R 23 � � A 1 A 3 P : T B ( A B ) :- R F ( A F ) R 41 R 34 B ∈B F ∈E A 4 P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . 10/22

  20. Disjunctive Datalog A 2 R 12 R 23 � � A 1 A 3 P : T B ( A B ) :- R F ( A F ) R 41 R 34 B ∈B F ∈E A 4 P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 1 a 1 1 c c 3 3 b b 1 1 d d 4 4 a b 2 2 c d 5 4 b 10/22

  21. Disjunctive Datalog A 2 R 12 R 23 � � A 1 A 3 P : T B ( A B ) :- R F ( A F ) R 41 R 34 B ∈B F ∈E A 4 P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 1 a 1 1 c c 3 3 b b 1 1 d d 4 4 a b 2 2 c d 5 4 b A 1 A 2 A 3 A 4 a 1 d 4 b 1 c 3 b 1 d 4 b 2 c 3 10/22

  22. Disjunctive Datalog A 2 R 12 R 23 � � A 1 A 3 P : T B ( A B ) :- R F ( A F ) R 41 R 34 B ∈B F ∈E A 4 P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 1 a 1 1 c c 3 3 b b 1 1 d d 4 4 a b 2 2 c d 5 4 b A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 2 A 3 A 4 a 1 d 4 b 1 c 1 d 4 b 1 c 3 b 2 c 2 c 3 b 1 d 4 2 d 4 b 2 c 3 10/22

  23. Disjunctive Datalog A 2 R 12 R 23 � � A 1 A 3 P : T B ( A B ) :- R F ( A F ) R 41 R 34 B ∈B F ∈E A 4 P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 1 a 1 1 c c 3 3 b b 1 1 d d 4 4 a b 2 2 c d 5 4 b A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 2 A 3 A 4 a 1 d 4 b 1 c 1 d 4 b 1 c 3 b 2 c 2 c 3 b 1 d 4 2 d 4 b 2 c 3 10/22

  24. Disjunctive Datalog A 2 R 12 R 23 � � A 1 A 3 P : T B ( A B ) :- R F ( A F ) R 41 R 34 B ∈B F ∈E A 4 P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 1 a 1 1 c c 3 3 b b 1 1 d d 4 4 a b 2 2 c d 5 4 b A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 2 A 3 A 4 a 1 d 4 b 1 c 1 d 4 b 1 c 3 b 2 c 2 c 3 b 1 d 4 2 d 4 b 2 c 3 Model size is max( | T 123 | , | T 234 | ) = 3 10/22

  25. Disjunctive Datalog A 2 R 12 R 23 � � A 1 A 3 P : T B ( A B ) :- R F ( A F ) R 41 R 34 B ∈B F ∈E A 4 P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 1 a 1 1 c c 3 3 b b 1 1 d d 4 4 a b 2 2 c d 5 4 b A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 2 A 3 A 4 a 1 d 4 b 1 c 1 d 4 b 1 c 3 b 2 c 2 c 3 b 1 d 4 2 d 4 b 2 c 3 Output size is the minimum over all models 10/22

  26. Disjunctive Datalog A 2 R 12 R 23 � � A 1 A 3 P : T B ( A B ) :- R F ( A F ) R 41 R 34 B ∈B F ∈E A 4 P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 1 a 1 1 c c 3 3 b b 1 1 d d 4 4 a b 2 2 c d 5 4 b A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 2 A 3 A 4 a 1 d 4 b 1 c 1 d 4 b 1 c 3 b 2 c b 1 d 4 A minimum-sized model of size 2 b 2 c 3 10/22

  27. Disjunctive Datalog A 2 R 12 R 23 � � A 1 A 3 P : T B ( A B ) :- R F ( A F ) R 41 R 34 B ∈B F ∈E A 4 P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 1 A 2 A 2 A 3 A 3 A 4 A 4 A 1 a 1 1 c c 3 3 b b 1 1 d d 4 4 a b 2 2 c d 5 4 b A 1 A 2 A 3 A 4 A 1 A 2 A 3 A 2 A 3 A 4 a 1 d 4 b 1 c 1 d 4 b 1 c 3 b 2 c b 1 d 4 A minimum-sized model of size 2 b 2 c 3 ⇒ Output size is 2 10/22

  28. Disjunctive Datalog: Output Size � � P : T B ( A B ) :- R F ( A F ) B ∈B F ∈E | P ( D ) | def = min = P max B ∈B | T B | T : T | 11/22

  29. Disjunctive Datalog: Output Size � � P : T B ( A B ) :- R F ( A F ) A 2 R 12 R 23 B ∈B F ∈E A 1 A 3 | P ( D ) | def R 41 R 34 = min = P max B ∈B | T B | T : T | A 4 11/22

  30. Disjunctive Datalog: Output Size � � P : T B ( A B ) :- R F ( A F ) A 2 R 12 R 23 B ∈B F ∈E A 1 A 3 | P ( D ) | def R 41 R 34 = min = P max B ∈B | T B | T : T | A 4 | R 12 | ≤ N, | R 23 | ≤ N, | R 34 | ≤ N, | R 41 | ≤ N. D : 11/22

  31. Disjunctive Datalog: Output Size � � P : T B ( A B ) :- R F ( A F ) A 2 R 12 R 23 B ∈B F ∈E A 1 A 3 | P ( D ) | def R 41 R 34 = min = P max B ∈B | T B | T : T | A 4 | R 12 | ≤ N, | R 23 | ≤ N, | R 34 | ≤ N, | R 41 | ≤ N. D : P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- ◮ R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . 11/22

  32. Disjunctive Datalog: Output Size � � P : T B ( A B ) :- R F ( A F ) A 2 R 12 R 23 B ∈B F ∈E A 1 A 3 | P ( D ) | def R 41 R 34 = min = P max B ∈B | T B | T : T | A 4 | R 12 | ≤ N, | R 23 | ≤ N, | R 34 | ≤ N, | R 41 | ≤ N. D : P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- ◮ R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . | P ( D ) | ≤ N 3 / 2 , for all D 11/22

  33. Disjunctive Datalog: Output Size � � P : T B ( A B ) :- R F ( A F ) A 2 R 12 R 23 B ∈B F ∈E A 1 A 3 | P ( D ) | def R 41 R 34 = min = P max B ∈B | T B | T : T | A 4 | R 12 | ≤ N, | R 23 | ≤ N, | R 34 | ≤ N, | R 41 | ≤ N. D : P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- ◮ R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . | P ( D ) | ≤ N 3 / 2 , for all D P ′ : T 123 ( A 1 , A 2 , A 3 ) :- ◮ R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . 11/22

  34. Disjunctive Datalog: Output Size � � P : T B ( A B ) :- R F ( A F ) A 2 R 12 R 23 B ∈B F ∈E A 1 A 3 | P ( D ) | def R 41 R 34 = min = P max B ∈B | T B | T : T | A 4 | R 12 | ≤ N, | R 23 | ≤ N, | R 34 | ≤ N, | R 41 | ≤ N. D : P : T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- ◮ R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . | P ( D ) | ≤ N 3 / 2 , for all D P ′ : T 123 ( A 1 , A 2 , A 3 ) :- ◮ R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . | P ′ ( D ) | = N 2 , for some D 11/22

  35. Disjunctive Datalog: Size Bounds � � P : T B ( A B ) :- R F ( A F ) B ∈B F ∈E def | P ( D ) | = min = P max B ∈B | T B | T : T | 12/22

  36. Disjunctive Datalog: Size Bounds � � P : T B ( A B ) :- R F ( A F ) B ∈B F ∈E def | P ( D ) | = min = P max B ∈B | T B | T : T | Recall that: ◮ HDC is the set of functions h : 2 [ n ] → R + satisfying the degree constraints ∗ Γ ∗ ⊂ ⊂ Γ Γ n ◮ n n ���� ���� ���� polymatroids entropic functions topological closure of Γ ∗ n 12/22

  37. Disjunctive Datalog: Size Bounds � � P : T B ( A B ) :- R F ( A F ) B ∈B F ∈E def | P ( D ) | = min = P max B ∈B | T B | T : T | Recall that: ◮ HDC is the set of functions h : 2 [ n ] → R + satisfying the degree constraints ∗ Γ ∗ ⊂ ⊂ Γ Γ n ◮ n n ���� ���� ���� polymatroids entropic functions topological closure of Γ ∗ n Theorem log | P ( D ) | 12/22

  38. Disjunctive Datalog: Size Bounds � � P : T B ( A B ) :- R F ( A F ) B ∈B F ∈E def | P ( D ) | = min = P max B ∈B | T B | T : T | Recall that: ◮ HDC is the set of functions h : 2 [ n ] → R + satisfying the degree constraints ∗ Γ ∗ ⊂ ⊂ Γ Γ n ◮ n n ���� ���� ���� polymatroids entropic functions topological closure of Γ ∗ n Theorem log | P ( D ) | ≤ max min B ∈B h ( B ) ∗ h ∈ Γ n ∩ HDC � �� � entropic bound 12/22

  39. Disjunctive Datalog: Size Bounds � � P : T B ( A B ) :- R F ( A F ) B ∈B F ∈E def | P ( D ) | = min = P max B ∈B | T B | T : T | Recall that: ◮ HDC is the set of functions h : 2 [ n ] → R + satisfying the degree constraints ∗ Γ ∗ ⊂ ⊂ Γ Γ n ◮ n n ���� ���� ���� polymatroids entropic functions topological closure of Γ ∗ n Theorem log | P ( D ) | ≤ max B ∈B h ( B ) min ≤ max B ∈B h ( B ) min h ∈ Γ n ∩ HDC ∗ h ∈ Γ n ∩ HDC � �� � � �� � entropic bound polymatroid bound 12/22

  40. Disjunctive Datalog: Size Bounds � � P : T B ( A B ) :- R F ( A F ) B ∈B F ∈E def | P ( D ) | = min = P max B ∈B | T B | T : T | Recall that: ◮ HDC is the set of functions h : 2 [ n ] → R + satisfying the degree constraints ∗ Γ ∗ ⊂ ⊂ Γ Γ n ◮ n n ���� ���� ���� polymatroids entropic functions topological closure of Γ ∗ n Theorem log | P ( D ) | ≤ max min B ∈B h ( B ) ≤ max B ∈B h ( B ) min h ∈ Γ n ∩ HDC ∗ h ∈ Γ n ∩ HDC � �� � � �� � entropic bound polymatroid bound (asymptotically tight!) 12/22

  41. Table of Contents Size Bounds for Full Conjunctive Queries Size Bounds for Disjunctive Datalog Algorithms for Disjunctive Datalog Algorithms for Conjunctive Queries 13/22

  42. PANDA ( P roof- A ssisted e N tropic D egree- A ware) ◮ An algorithm for disjunctive datalog 14/22

  43. PANDA ( P roof- A ssisted e N tropic D egree- A ware) ◮ An algorithm for disjunctive datalog ◮ computes a model 14/22

  44. PANDA ( P roof- A ssisted e N tropic D egree- A ware) ◮ An algorithm for disjunctive datalog ◮ computes a model ◮ within the polymatroid bound: 14/22

  45. PANDA ( P roof- A ssisted e N tropic D egree- A ware) ◮ An algorithm for disjunctive datalog ◮ computes a model ◮ within the polymatroid bound: ◮ the worst-case size of the minimum model . 14/22

  46. PANDA ( P roof- A ssisted e N tropic D egree- A ware) ◮ An algorithm for disjunctive datalog ◮ computes a model ◮ within the polymatroid bound: ◮ the worst-case size of the minimum model . ◮ Outline 14/22

  47. PANDA ( P roof- A ssisted e N tropic D egree- A ware) ◮ An algorithm for disjunctive datalog ◮ computes a model ◮ within the polymatroid bound: ◮ the worst-case size of the minimum model . ◮ Outline ◮ Construct a Proof Sequence for the bound. 14/22

  48. PANDA ( P roof- A ssisted e N tropic D egree- A ware) ◮ An algorithm for disjunctive datalog ◮ computes a model ◮ within the polymatroid bound: ◮ the worst-case size of the minimum model . ◮ Outline ◮ Construct a Proof Sequence for the bound. ◮ Interpret each proof step as an algorithmic step. 14/22

  49. PANDA ◮ Polymatroid bound: h ∈ Γ n ∩ HDC min max B ∈B h ( B ) 15/22

  50. PANDA ◮ Polymatroid bound: h ∈ Γ n ∩ HDC min max B ∈B h ( B ) � h ∈ Γ n ∩ HDC min max B ∈B h ( B ) = max λ B h ( B ) ◮ h ∈ Γ n ∩ HDC B ∈B 15/22

  51. PANDA ◮ Polymatroid bound: h ∈ Γ n ∩ HDC min max B ∈B h ( B ) � h ∈ Γ n ∩ HDC min max B ∈B h ( B ) = max λ B h ( B ) ◮ h ∈ Γ n ∩ HDC B ∈B � � λ B · h ( B ) ≤ δ Y | X · h ( Y | X ) ◮ � �� � B ∈B ( X,Y,N Y | X ) ≤ log N Y | X 15/22

  52. PANDA ◮ Polymatroid bound: h ∈ Γ n ∩ HDC min max B ∈B h ( B ) � h ∈ Γ n ∩ HDC min max B ∈B h ( B ) = max λ B h ( B ) ◮ h ∈ Γ n ∩ HDC B ∈B � � λ B · h ( B ) ≤ δ Y | X · h ( Y | X ) ◮ � �� � B ∈B ( X,Y,N Y | X ) ≤ log N Y | X ◮ Proof Sequence Given X ⊆ Y : h ( X ) + h ( Y | X ) → h ( Y ) h ( Y ) → h ( X ) + h ( Y | X ) h ( Y ) → h ( X ) h ( Y | X ) → h ( Y ∪ Z | X ∪ Z ) 15/22

  53. PANDA ◮ Polymatroid bound: h ∈ Γ n ∩ HDC min max B ∈B h ( B ) � h ∈ Γ n ∩ HDC min max B ∈B h ( B ) = max λ B h ( B ) ◮ h ∈ Γ n ∩ HDC B ∈B � � λ B · h ( B ) ≤ δ Y | X · h ( Y | X ) ◮ � �� � B ∈B ( X,Y,N Y | X ) ≤ log N Y | X ◮ Proof Sequence Given X ⊆ Y : h ( X ) + h ( Y | X ) → h ( Y ) (join) h ( Y ) → h ( X ) + h ( Y | X ) (data partition) h ( Y ) → h ( X ) (projection) h ( Y | X ) → h ( Y ∪ Z | X ∪ Z ) (nothing) ◮ Algorithmic Sequence 15/22

  54. PANDA ◮ Polymatroid bound: h ∈ Γ n ∩ HDC min max B ∈B h ( B ) � h ∈ Γ n ∩ HDC min max B ∈B h ( B ) = max λ B h ( B ) ◮ h ∈ Γ n ∩ HDC B ∈B � � λ B · h ( B ) ≤ δ Y | X · h ( Y | X ) ◮ � �� � B ∈B ( X,Y,N Y | X ) ≤ log N Y | X ◮ Proof Sequence Given X ⊆ Y : h ( X ) + h ( Y | X ) → h ( Y ) (join) h ( Y ) → h ( X ) + h ( Y | X ) (data partition) h ( Y ) → h ( X ) (projection) h ( Y | X ) → h ( Y ∪ Z | X ∪ Z ) (nothing) ◮ Algorithmic Sequence Theorem PANDA solves any disjunctive datalog rule P in time within the polymatroid bound of P . 15/22

  55. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 16/22

  56. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N 16/22

  57. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 16/22

  58. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) 16/22

  59. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 16/22

  60. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) 2 16/22

  61. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 16/22

  62. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) 16/22

  63. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) → h ( A 3 A 4 ) → h ( A 4 | A 3 ) + h ( A 3 ) 16/22

  64. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) → h ( A 3 A 4 ) → h ( A 4 | A 3 ) + h ( A 3 ) h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 3 ) + h ( A 3 ) 16/22

  65. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) → h ( A 3 A 4 ) → h ( A 4 | A 3 ) + h ( A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 3 ) + h ( A 3 ) → h ( A 4 | A 3 ) → h ( A 4 | A 2 A 3 ) 16/22

  66. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) → h ( A 3 A 4 ) → h ( A 4 | A 3 ) + h ( A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 3 ) + h ( A 3 ) → h ( A 4 | A 3 ) → h ( A 4 | A 2 A 3 ) h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) + h ( A 3 ) 16/22

  67. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) → h ( A 3 A 4 ) → h ( A 4 | A 3 ) + h ( A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 3 ) + h ( A 3 ) → h ( A 4 | A 3 ) → h ( A 4 | A 2 A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) + h ( A 3 ) → h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) → h ( A 2 A 3 A 4 ) 16/22

  68. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) → h ( A 3 A 4 ) → h ( A 4 | A 3 ) + h ( A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 3 ) + h ( A 3 ) → h ( A 4 | A 3 ) → h ( A 4 | A 2 A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) + h ( A 3 ) → h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) → h ( A 2 A 3 A 4 ) h ( A 1 A 2 ) + h ( A 2 A 3 A 4 ) + h ( A 3 ) 16/22

  69. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) → h ( A 3 A 4 ) → h ( A 4 | A 3 ) + h ( A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 3 ) + h ( A 3 ) → h ( A 4 | A 3 ) → h ( A 4 | A 2 A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) + h ( A 3 ) → h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) → h ( A 2 A 3 A 4 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 A 4 ) + h ( A 3 ) → h ( A 1 A 2 ) → h ( A 1 A 2 | A 3 ) 16/22

  70. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) → h ( A 3 A 4 ) → h ( A 4 | A 3 ) + h ( A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 3 ) + h ( A 3 ) → h ( A 4 | A 3 ) → h ( A 4 | A 2 A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) + h ( A 3 ) → h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) → h ( A 2 A 3 A 4 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 A 4 ) + h ( A 3 ) → h ( A 1 A 2 ) → h ( A 1 A 2 | A 3 ) h ( A 1 A 2 | A 3 ) + h ( A 2 A 3 A 4 ) + h ( A 3 ) 16/22

  71. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) → h ( A 3 A 4 ) → h ( A 4 | A 3 ) + h ( A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 3 ) + h ( A 3 ) → h ( A 4 | A 3 ) → h ( A 4 | A 2 A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) + h ( A 3 ) → h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) → h ( A 2 A 3 A 4 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 A 4 ) + h ( A 3 ) → h ( A 1 A 2 ) → h ( A 1 A 2 | A 3 ) � � h ( A 1 A 2 | A 3 ) + h ( A 2 A 3 A 4 ) + h ( A 3 ) → h ( A 1 A 2 | A 3 ) + h ( A 3 ) → h ( A 1 A 2 A 3 ) 16/22

  72. PANDA : Example A 2 R 12 R 23 T 123 ( A 1 , A 2 , A 3 ) ∨ T 234 ( A 2 , A 3 , A 4 ) :- P : A 1 A 3 R 12 ( A 1 , A 2 ) , R 23 ( A 2 , A 3 ) , R 41 R 34 R 34 ( A 3 , A 4 ) , R 41 ( A 4 , A 1 ) . A 4 | P | ≤ N 3 / 2 | R 12 | , | R 23 | , | R 34 | , | R 41 | ≤ N ⇒ 1 � � log | P | ≤ min( h ( A 1 A 2 A 3 ) , h ( A 2 A 3 A 4 )) ≤ h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 2 1 3 � � ≤ h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) ≤ 2 log N 2 � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 3 A 4 ) → h ( A 3 A 4 ) → h ( A 4 | A 3 ) + h ( A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 3 ) + h ( A 3 ) → h ( A 4 | A 3 ) → h ( A 4 | A 2 A 3 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) + h ( A 3 ) → h ( A 2 A 3 ) + h ( A 4 | A 2 A 3 ) → h ( A 2 A 3 A 4 ) � � h ( A 1 A 2 ) + h ( A 2 A 3 A 4 ) + h ( A 3 ) → h ( A 1 A 2 ) → h ( A 1 A 2 | A 3 ) � � h ( A 1 A 2 | A 3 ) + h ( A 2 A 3 A 4 ) + h ( A 3 ) → h ( A 1 A 2 | A 3 ) + h ( A 3 ) → h ( A 1 A 2 A 3 ) h ( A 1 A 2 A 3 ) + h ( A 2 A 3 A 4 ) 16/22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend