well posedness and adiabatic limit for quantum zakharov
play

Well-Posedness and Adiabatic Limit for Quantum Zakharov System - PowerPoint PPT Presentation

Well-Posedness and Adiabatic Limit for Quantum Zakharov System Yung-Fu Fang (joint work with Tsai-Jung Chen, Chi-Kun Lin, Jun-Ichi Segata, Hsi-Wei Shih, Kuan-Hsiang Wang, Tsung-fang Wu) Department of Mathematics National Cheng Kung University


  1. Well-Posedness and Adiabatic Limit for Quantum Zakharov System Yung-Fu Fang (joint work with Tsai-Jung Chen, Chi-Kun Lin, Jun-Ichi Segata, Hsi-Wei Shih, Kuan-Hsiang Wang, Tsung-fang Wu) Department of Mathematics National Cheng Kung University Tainan, 701 Taiwan Talk at NSYSU The 24th Annual Workshop on Differential Equations Feb. 22 ∼ 23, 2016

  2. Abstract : For a Quantum Zakharov system, we study the LWP and GWP, adiabatic limit, and least energy solution. We obtain the adiabatic limit for ( QZ ) to a quantum modified NLS. We also prove the existence of homoclinic solutions with the least energy. We show an ill-posedness problem. Future study for ( QZ ) : LWP in 2D and 3D, semi-classical limit and subsonic limit, ground state, soliton waves, asymptotic behavior, and eventually the scattering problem.

  3. 1. Introduction : Zakharov System describes the propagation of Langmuir waves in an ionized plasma. ( rapid oscillations of the electron density)   iE t + ∂ 2 x E = nE, x ∈ R,   n tt − ∂ 2 x n = ∂ 2 x | E | 2 , (Z)    E ( x, 0) = E 0 ( x ) , n ( x, 0) = n 0 ( x ) , n t ( x, 0) = n 1 ( x ) . E = the rapidly oscillating electric field, n = the deviation of the ion density from its mean value. For the derivation of ( Z ) system, see [Z] and [OT].

  4. Conservation of Mass: � | E ( x, t ) | 2 dx = constant Conservation of Hamiltonian: � | ∂ x E ( t ) | 2 + 1 2 n ( t ) 2 + n ( t ) | E ( t ) | 2 + 1 2 ν ( t ) 2 dx = constant � n + | E | 2 � where ∂ t n = ∂ x ν and ∂ t ν = ∂ x .

  5. Global Well-Posedness: ( Z ) system with initial data ( E 0 , n 0 , n 1 ) ∈ H k ⊕ H l ⊕ H l − 1 ( R ) . Figure 1:

  6. Taking quantum effects into account, we consider   iE t + ∂ 2 x E − ε 2 ∂ 4  x E = nE, x ∈ R ;  n tt − ∂ 2 x n + ε 2 ∂ 4 x n = ∂ 2 x | E | 2 (QZ)    E ( x, 0) = E 0 ( x ) , n ( x, 0) = n 0 ( x ) , n t ( x, 0) = n 1 ( x ) . (6 . 63 × 10 − 27 )(8 × 10 9 ) ε = � ω i Proton 2 π (1 . 38 × 10 − 16 )(10 5 ) ∼ 6 . 12 × 10 − 5 ∼ κ B T e � = Planck’s constant /2 π , ω i = ion plasma frequency κ B = Boltzmann constant, T e = electron fluid temperature

  7. Conservation of Mass: � | E ( x, t ) | 2 dx = constant Conservation of Hamiltonian: � 2 ν 2 + ε 2 x E | 2 + 1 2 n 2 + n | E | 2 + 1 | ∂ x E | 2 + ε 2 | ∂ 2 2 | ∂ x n | 2 dx = constant � � n + | E | 2 − ε 2 ∂ 2 where ∂ t n = ∂ x ν and ∂ t ν = ∂ x . x n

  8. Local Well-Posedness: ( QZ ) with initial data ( E 0 , n 0 , n 1 ) ∈ H k ⊕ H ℓ ε ⊕ H ℓ − 1 ε Figure 2:

  9. Local Well-Posedness: ( Z ) with initial data ( E 0 , n 0 , n 1 ) ∈ H k ⊕ H ℓ ε ⊕ H ℓ − 1 ε Figure 3:

  10. ILL-Posedness Problem: Figure 4:

  11. 2. Notations and Solution formulae � � 1 − ε 2 ∂ 2 1 + ε 2 ξ 2 . Denote D ε := and ξ ε := ξ x Decompose ( QZ ) we get  iE t + ∂ 2 x D 2  ε E = ( n + + n − ) E, x ∈ R (QZ ± ) ∂ t n ± ± ∂ x D ε n ± = ∓ 1 1 ∂ x | E | 2 + 1  2 n 1 L , 2 D ε The integral formulae for solutions: � � E ( t, x ) = U ε ( t ) E 0 ( x ) − iU ε ∗ R ( n + + n − ) E ( t, x ) (2 . 1) � ε ∂ x | E | 2 � D − 1 n ± ( t, x ) = W ε ± ( t )( n 0 , n 1 ) ∓ W ε ± ∗ R ( t, x ) (2 . 2)

  12. Denote the Sobolev norms � � � ξ � 2 ℓ | � � ξ ε � 2 ℓ | � � f � 2 f ( ξ ) | 2 dξ, � f � 2 f ( ξ ) | 2 dξ, H ℓ := ε := (2 . 3) H ℓ � � | � | ξ ε | 2 ℓ | � � f � 2 f ( ξ ) | 2 dξ + f ( ξ ) | 2 dξ . ε := A ℓ | ξ |≤ 1 1 ≤| ξ | Denote the Sobolev norm for acoustic wave � �� �� � � n ( t ) � W ε := n ( t ) , ∂ t n ( t ) W ε := � n ( t ) � A ℓ ε + � ∂ t n ( t ) � A ℓ − 1 ε

  13. Bourgain norm for Schr¨ odinger part: � � � � 1 ε � 2 b 1 | � 2 � ξ ε � 2 k � τ + ξ 2 E ( τ, ξ ) | 2 dτdξ � E � X Sε k,b 1 := (2 . 5) Bourgain norm for Wave part: � � � � 1 2 � ξ ε � 2 ℓ � τ ± ξ ε � 2 b | � n ( τ, ξ ) | 2 dτdξ � n ± � X := (2 . 6) Wε ± ℓ,b Y norm for Schr¨ odinger part: � � � � � 2 � 1 ε � − 1 | � 2 � ξ ε � k � τ + ξ 2 � E � Y Sε k := E ( τ, ξ ) | dτ (2 . 7) dξ Y norm for Wave part: � � � � � 2 � 1 � ξ ε � ℓ � τ ± ξ ε � − 1 | � 2 � n ± � Y := n ± ( τ, ξ ) | dτ (2 . 8) dξ Wε ± ℓ

  14. 3. Estimates for Iteration Argument Lemma 1. (Homogeneous Estimates) Lemma 2. (Duhamel Estimates) Lemma 3. (Multilinear Estimates) Let 0 < ε ≤ 1 . � n ± E � X Sε k, − c 1 � C ( ε ) � n ± � X ℓ,b � E � X Sε (3 . 1) k,b 1 . Wε ± ε ∂ x ( E 1 ¯ � D − 1 E 2 ) � X ℓ, − c � C ( ε ) � E 1 � X Sε k,b 1 � E 2 � X Sε (3 . 2) k,b 1 . Wε ± � n ± E � Y Sε k � C ( ε ) � n ± � X ℓ,b � E � X Sε (3 . 3) k,b 1 . Wε ± � � E 1 ¯ � D − 1 � Y � C ( ε ) � E 1 � X Sε k,b 1 � E 2 � X Sε (3 . 4) ε ∂ x E 2 k,b 1 . Wε ± ℓ

  15. 4. Proof of Multilinear Estimates Proof. We only outline the proof for � D − 1 ε ∂ x ( E 1 E 2 ) � X ℓ, − c � C 2 ( ε ) � E 1 � X Sε k,b 1 � E 2 � X Sε k,b 1 . Wε ± First we set ξ = ξ 1 − ξ 2 and decompose the ξ 1 - ξ 2 plane into Ω 1 ∪ Ω 2 ∪ Ω 3 ∪ Ω 4 , where Ω 1 = { ( ξ 1 , ξ 2 ) : | ξ 2 | ≪ | ξ 1 | ∼ | ξ |} , Ω 2 = { ( ξ 1 , ξ 2 ) : | ξ 1 | ≪ | ξ 2 | ∼ | ξ |} , Ω 3 = { ( ξ 1 , ξ 2 ) : | ξ 1 | ∼ | ξ 2 | ∼ | ξ |} , Ω 4 = { ( ξ 1 , ξ 2 ) : | ξ | ≪ | ξ 1 | ∼ | ξ 2 |} .

  16. By duality argument, the estimate � D − 1 ε ∂ x ( E 1 E 2 ) � X Wε + ℓ, − c � � E 1 � X Sε k,b 1 � E 2 � X Sε k,b 1 � �� � � � D − 1 ∼ ε ∂ x ( E 1 E 2 ) , g � � � E 1 � X Sε k,b 1 � E 2 � X Sε k,b 1 � g � X Wε + − ℓ,c . � We set − ℓ,c = �� ξ ε � − ℓ � τ + ξ ε � c � � g � X Wε + g � L 2 ≡ � � v � L 2 ε � b 1 � k,b 1 = �� ξ ε � k � τ + ξ 2 � E j � X Sε E j � L 2 ≡ � � v j � L 2 � � D − 1 We can rewrite ε ∂ x ( E 1 E 2 ) , g as � � ξ ε � ℓ � v ( τ, ξ ) v 2 ( τ 2 , ξ 2 ) � � v 1 ( τ 1 , ξ 1 ) iξ � dτ 2 dξ 2 dτ 1 dξ 1 , � ξ 1 ε � k � ξ 2 ε � k � σ � c � σ 2 � b 1 � σ 1 � b 1 1 + ε 2 ξ 2 τ = τ 1 − τ 2 , ξ = ξ 1 − ξ 2 , σ = τ + ξ ε , σ 2 = τ 2 + ξ 2 2 ε , σ 1 = τ 1 + ξ 2 1 ε . � � v � L 2 � v 1 � L 2 � v 2 � L 2 .

  17. 5. Existence of a Least Energy Solution Consider the stationary solution and static solution to ( QZ ) in 1D by setting E ( x, t ) = e iωt Q ( x ) and n ( x, t ) = n ( x ) . Then � − ωQ + Q ′′ − ε 2 Q (4) = nQ, ⇒ ( QZ ) − n + ε 2 n ′′ = Q 2 . Question 1. Does solution Q ε,ω ( x ) and n ε,ω ( x ) exist? Question 2. Does lim ε → 0 ( Q ε,ω , n ε,ω ) = ( Q 0 ,ω , − Q 2 0 ,ω )? Question 3. Numerical Results? Question 4. Stability of such solutions? Soliton?

  18. Lemma 4. Let n = 1 . � 1 ε Q 2 ( y ) dy → − Q 2 ( x ) as ε → 0 . −| x − y | n ε,Q ( x ) = − 2 εe R Plug n ε,Q back into the system to get an ODE with a nonlocal term. � 1 − ωQ + Q ′′ − ε 2 Q (4) = − Q ε Q 2 ( y ) dy. −| x − y | (E ε ) 2 εe R For 2D and 3D, we also have the solution formula for − ωQ + ∆ Q − ε 2 ∆ 2 Q = − Q (1 − ε 2 ∆) − 1 Q 2 . (E ε ) Theorem 1. (Fang & Wu, 2015) Let n = 1 , 2 , 3 . For each 0 < ε ≤ 1 , Problem ( E ε ) has a least energy homoclinic solution Q ε .

  19. Consider the Zakharov system in 1D,   iE t + ∂ 2  x E = nE, x ∈ R,  λ − 2 n tt − ∂ 2 x n = ∂ 2 x | E | 2 , (Z)    E ( x, 0) = E 0 ( x ) , n ( x, 0) = n 0 ( x ) , n t ( x, 0) = n 1 ( x ) . When wave speed λ tends to infinity, naturally acoustic wave passed and disappeared, only remained the Schr¨ odinger part.

  20. Review the ground state for ( Z ), � − ωQ + Q ′′ = nQ, − n = Q 2 . Thus we get − ωQ + Q ′′ + Q 3 = 0 . The solution can be derived via Newton’s method starting with Gaus- sian function. Hence the exact solution is √ 2 βsech ( βx ) , where β = √ ω. Q ( x ) = Finally solitary solutions for ( Z ) can be given as E λ, 0 ( x, t ) = e i ( β 2 − α 2 ) t e iαx � 1 − 4 λ − 2 α 2 √ � � 2 βsech β ( x − 2 αt ) . n λ, 0 ( x, t ) = − 2 β 2 sech 2 � � β ( x − 2 αt ) .

  21. Consider a system that is close related to ( QZ ),  iE t + ∂ 2 x E − ε 2 ∂ 4  x E = nE, x ∈ R ; n = −| E | 2 + ε 2 � 3 � 2 | E | 4 + 3( ∂ x E ) 2 ¯ E E + 2 | ∂ x E | 2 + E∂ 2  x ¯ E + 4 ¯ E∂ 2 x E . It possesses solitary waves E ,ε ( x, t ) = e i ( ω − αc ) t e iαx √ � � 2 βsech β ( x − ct ) , ω − αc = − ε 2 ( α 4 + β 4 − 6 α 2 β 2 ) − α 2 + β 2 where and c = ε 2 α (4 α 2 − 4 β 2 ) + 2 α . Question : can we estimate � E λ,ε − E ∞ ,ε � ? � n λ,ε − n ∞ ,ε � ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend