wavefunctions in chaotic quantum systems
play

Wavefunctions in chaotic quantum systems Arnd B acker Institut f - PowerPoint PPT Presentation

Wavefunctions in chaotic quantum systems Arnd B acker Institut f ur Theoretische Physik TU Dresden www.physik.tu-dresden.de/baecker Lund, January 2004 I Introduction Aim Overview on properties of eigenfunctions in chaotic


  1. IV SoE – Random wave model – consequences Amplitude distribution is Gaussian For the amplitude distribution P n ( ψ ) of an eigenfunction ψ n ( q ) � b vol( { q ∈ Ω | ψ n ( q ) ∈ [ a, b ] ⊂ R } ) =: P n ( ψ ) d ψ . (24) vol(Ω) a the random wave model implies � � − ψ 2 1 √ P ( ψ ) = 2 πσ exp . (25) 2 σ 2 with variance σ 2 = 1 / vol(Ω) . Arnd B¨ acker 26 � ⇓ ⇐ ⇒ Σ ⊕

  2. IV SoE – Random wave model – consequences Amplitude distribution – example 0.5 P( ψ ) 0.4 0.3 0.2 0.1 0.0 ψ -4 -3 -2 -1 0 1 2 3 4 Arnd B¨ acker 27 � ⇓ ⇐ ⇒ Σ ⊕

  3. IV SoE – Random wave model – consequences 2 Bound on the growth of eigenfunctions For random waves one has with probability one (see ([R. Aurich, AB, R. Schubert, and M. Taglieber ’99]) ) √ max x ∈ Ω | f ( x ) | √ lim sup ≤ 3 2 . (26) ln E E →∞ In contrast to the general result ([Seeger, Sogge ’89; Grieser ’97]) || ψ n || ∞ < c E 1 / 4 , (27) n which is sharp (e.g. sphere S 2 , circle billiard). Arnd B¨ acker 28 � ⇓ ⇐ ⇒ Σ ⊕

  4. IV SoE – Maximum norms – (some) known results • Conjecture [Sarnak 95, Iwaniec and Sarnak 95] : for surfaces of constant negative curvature: || ψ n || ∞ < c ε E ε ∀ ε > 0 (28) , . n (related to Lindel¨ of hypothesis) • Arithmetic surfaces [Iwaniec and Sarnak 95] : for a Hecke basis 5 24 + ε || ψ n || ∞ < c ε E ∀ ε > 0 , . n � || ψ n j || ∞ ≥ c ln ln E n j , for a subsequence . • Arithmetic three manifolds [Rudnick and Sarnak 94, Koyama 95] : there exist || ψ n || ∞ < c ε E 37 / 76+ ε systems with , n || ψ n j || ∞ > cE 1 / 4 and a system with , n j for Hecke eigenfunctions. Arnd B¨ acker 29 � ⇓ ⇐ ⇒ Σ ⊕

  5. IV SoE – Maximum norms – Euclidean billiards Stadium billiard 2000 odd-odd eigenfunctions 2000 even-even eigenfunctions 8 8 e) f) L ∞ L ∞ 6 6 4 4 2 2 0 0 0 10000 20000 E 0 10000 20000 E Cardioid: 6000 odd eigenfunctions Circle billiard: 1244 eigenfunctions 8 8 L ∞ d) L ∞ 6 6 4 4 2 2 0 0 0 20000 40000 60000 E 0 5000 10000 E 15000 Arnd B¨ acker 30 � ⇓ ⇐ ⇒ Σ ⊕

  6. IV SoE – Maximum norms – constant negative curvature Arithmetic triangle: 2099 functions Non-arithmetic triangle: 2092 functions 8 8 a) b) L ∞ L ∞ 6 6 4 4 2 2 0 0 0 10000 20000 E 0 10000 20000 E 3139 eigenfunctions Octagon 500 eigenfunctions 8 8 c) L ∞ L ∞ 6 6 4 4 2 2 0 0 0 10000 20000 30000 E 40000 315000 317500 E 320000 blue – maxima of eigenfunctions red – mean of maxima of 200 random waves Arnd B¨ acker 31 � ⇓ ⇐ ⇒ Σ ⊕

  7. IV SoE – Maximum norms – eigenstates with large norm Arnd B¨ acker 32 � ⇓ ⇐ ⇒ Σ ⊕

  8. V Quantum ergodicity Semiclassical eigenfunction hypothesis [Berry ’77, ’83, Voros ’79] The Wigner function � 1 n ( q − q ′ / 2) ψ n ( q + q ′ / 2) d q ′ , e i pq ′ ψ ∗ W n ( p , q ) := (2 π ) 2 semiclassically concentrates on those regions in phase space, which a typical orbit explores in the long time limit t → ∞ . Implications for integrable systems chaotic systems Arnd B¨ acker 33 � ⇓ ⇐ ⇒ Σ ⊕

  9. V Quantum ergodicity Consequences of the semiclassical eigenfunction hypothesis: For integrable systems : Localization on invariant tori W ( p , q ) ∼ δ ( I ( p , q ) − I ) (29) (2 π ) 2 (here: I ( p , q ) : action variable) For chaotic systems 1 W n ( p , q ) → vol(Σ E ) δ ( H ( p , q ) − E ) , (30) i.e. semiclassical condensation on the energy surface Σ E . Remark: for ergodic systems one can show ([AB, RS, PS ’98]) QET implies the semiclassical eigenfunction hypothesis (when restricted to a subsequence of density one). Arnd B¨ acker 34 � ⇓ ⇐ ⇒ Σ ⊕

  10. V QE — observables and operators [AB, R. Schubert, P. Stifter ’98] Classical observables are functions on phase space R 2 × Ω , The mean value of an observable a ( p , q ) at energy E is given by � 1 a E = a ( p , q ) d ν . (31) vol(Σ E ) Σ E Weyl symbol W[ A ] : To an operator A associate � � � q − q ′ 2 , q + q ′ e i q ′ p K A d 2 q ′ , W[ A ]( p , q ) := (32) 2 R 2 where K A is the Schwarz kernel, Aψ ( q ) = K A ( q , q ′ ) ψ ( q ′ ) d 2 q ′ . � Ω A is called a pseudodifferential operator , A ∈ S m (Ω) , if its Weyl symbol belongs to a certain class of functions S m ( R 2 × Ω) ⊂ C ∞ ( R 2 × Ω) . Arnd B¨ acker 35 � ⇓ ⇐ ⇒ Σ ⊕

  11. V QE — observables and operators Weyl quantization: a �→ A To any function a ∈ S m ( R 2 × Ω) one can associate an operator Op [ a ] ∈ S m (Ω) , � � �� p , q + q ′ 1 e i ( q − q ′ ) p a f ( q ′ ) d 2 q ′ d 2 p Op [ a ] f ( q ) := (2 π ) 2 2 Ω × R 2 such that its Weyl symbol is a , i.e. W[ Op [ a ]] = a . cl ( R 2 × Ω) ⊂ C ∞ ( R 2 × Ω) : Classical symbols S m have an asymptotic expansion in homogeneous functions in p , ∞ � a m − k ( p , q ) , with a m − k ( λ p , q ) = λ m − k a m − k ( p , q ) a ( p , q ) ∼ k =0 Arnd B¨ acker 36 � ⇓ ⇐ ⇒ Σ ⊕

  12. V QE — observables and operators Classical pseudodifferential operators : S m cl : corresponding class of pseudodifferential operators m ∈ R : order of the pseudodifferential operator. cl (Ω) and W[ A ] ∼ � ∞ Principal symbol: For A ∈ S m k =0 a m − k the leading term a m ( p , q ) is called the principal symbol of A The principal symbol denoted by σ ( A )( p , q ) := a m ( p , q ) . For details see e.g.: • [AB, R. Schubert, P.Stifter ’98] • [R. Schubert 2001] Arnd B¨ acker 37 � ⇓ ⇐ ⇒ Σ ⊕

  13. V QE — observables and operators The Wigner function of a state | ψ � is given as the Weyl symbol of the corresponding projection operator | ψ �� ψ | � � � � � q − q ′ q + q ′ � � e i q ′ p ψ ⋆ d 2 q ′ . | ψ �� ψ | ( p , q ) = ψ W 2 2 R 2 (33) From the Wigner function one can recover | ψ ( q ) | 2 by � � � 1 | ψ ( q ) | 2 = ( p , q ) d 2 p . W | ψ �� ψ | (34) (2 π ) 2 R 2 For the expectation value � ψ, Aψ � we have �� � � 1 ( p , q ) d 2 p d 2 q . � ψ, Aψ � = | ψ �� ψ | W[ A ]( p , q ) W (2 π ) 2 Ω × R 2 Arnd B¨ acker 38 � ⇓ ⇐ ⇒ Σ ⊕

  14. V Quantum ergodicity theorem QET [Shnirelman ’74, Colin de Verdi` ere ’85, Zelditch ’87, Zelditch/Zworski ’96, ....] For ergodic systems there exists a subsequence { n j } of density one such that j →∞ � ψ n j , Aψ n j � = σ ( A ) , lim (35) for every classical pseudodifferential operator A of order zero. Here σ ( A ) is the principal symbol of A . And σ ( A ) is its classical expectation value, �� 1 a ( p , q ) δ ( p 2 − 1) d p d q . a = (36) vol(Σ 1 ) R 2 × Ω # { n j | E n j < E } A subsequence { n j } ⊂ N has density one if lim = 1 , N ( E ) E →∞ where N ( E ) := # { n | E n < E } is the spectral staircase function. Arnd B¨ acker 39 � ⇓ ⇐ ⇒ Σ ⊕

  15. V Quantum ergodicity theorem – Special Case Classical ergodicity of a flow { φ t } � T 1 χ D ( φ t ( p , q ) d t = vol( D ) lim 2 T vol(Ω) T →∞ − T for almost all initial conditions in phase space, ( p , q ) ∈ T ∗ Ω . Quantum ergodicity in position space � χ D ( q ) | ψ n j ( q ) | 2 d 2 q = vol( D ) lim vol(Ω) j →∞ Ω for a subsequence of density one. Quantum ergodicity theorem makes statement about sequences of eigenfunctions (weak limit!). Arnd B¨ acker 40 � ⇓ ⇐ ⇒ Σ ⊕

  16. V QET – Example – observable in position space Consider as observable A = χ D ( q ) and plot � χ D ( q ) | ψ n j ( q ) | 2 d 2 q − vol( D ) (37) vol(Ω) Ω 0.03 d(n) 0.02 0.01 0.00 -0.01 -0.02 -0.03 0 1000 2000 3000 4000 5000 n 6000 Arnd B¨ acker 41 � ⇓ ⇐ ⇒ Σ ⊕ Quite strong fluctuations around 0.

  17. ✩ ✫ � ✕ ✂ ✝ ✩ ☞ ✕ ✌ ✍ ☞ � ✌ ☞ ✟ ✔ ✕ ✖ ✙ ✕ ✕ � ✁ V QET – Example – observable in position space Thus consider cumulative differences � � � � � � � � 1 χ D ( q ) | ψ n j ( q ) | 2 d 2 q − vol( D ) � � S 1 ( E, A ) := . � � N ( E ) � � vol(Ω) � � n : E n ≤ E Ω ✩✮✭✯✩✰✔✘✩ ✟✏✎✑✟ ☞✒✌ ✄✆☎ ☞✘✗✚✙✜✛✠✢✤✣✤✥✧✦ ✟✏✎✑✟ ✩✮✭✯✩ ✟✏✎✑✟☛✟ ✟✏✎✑✟☛✟✓✞ ✩✮✭✯✩ ✟☛✟✡✟ ✟☛✟☛✟ ✟☛✟☛✟ ✟☛✟☛✟☛✟ ✞✠✟✡✟☛✟☛✟ ✩✮✭✯✩✪✩✰✫ ✩✮✭✯✩✪✩✪✩ ✫✆✩✪✩✪✩ ✩✪✩✪✩✬✩ ✫✘✩✬✩✪✩ ✔✆✩✪✩✪✩✪✩ ✔✪✫✆✩✪✩✪✩ ★✪✩✪✩✪✩✪✩ Remark: QET is equivalent to S 1 ( E, A ) → 0 as E → ∞ . Arnd B¨ acker 42 � ⇓ ⇐ ⇒ Σ ⊕

  18. V Quantum ergodicity theorem — “example” 1 Example: Square billiard (to confuse you ... ;-): ψ kl ( x, y ) = 1 π sin( kx ) sin( ly ) k, l ∈ N (38) Then one gets �� | ψ kl ( x, y ) | 2 d x d y D 2 π D Ω y 1 � x 1 � 2 π = 1 d y sin 2 ( kx ) sin 2 ( ly ) d x (39) π 2 x 0 y 0 → ( x 1 − x 0 )( y 1 − y 0 ) ≡ vol( D ) (40) π 2 vol(Ω) for a subsequence of density one. Arnd B¨ acker 43 � ⇓ ⇐ ⇒ Σ ⊕

  19. V Quantum ergodicity theorem — “example” 2 Consider the observable a ( p , q ) = a ( p ) . Then � | � ψ n ( p ) | 2 a ( p ) d 2 p , � ψ n , Aψ n � = (41) R 2 with � 1 � e i pq ψ ( q ) d 2 q ψ n ( p ) = (42) (2 π ) 2 R 2 Characteristic function in momentum space a ( p ) = χ C ( θ,δθ ) ( p ) where � � ( r, ϕ ) | r ∈ R + , ϕ ∈ [ θ − δθ/ 2 , θ + δθ/ 2] C ( θ, δθ ) := (43) Arnd B¨ acker 44 � ⇓ ⇐ ⇒ Σ ⊕

  20. V Quantum ergodicity theorem — “example” 2 QET implies for a subsequence of density one: �� ψ n j ( p ) | 2 d 2 p = δθ | � lim (44) 2 π n j →∞ C ( θ,δθ ) Example: Circle billiard (to confuse you even more ... ;-): ψ kl ( r, φ ) = J k ( j kl r ) cos( kφ ) (45) One can show that a subsequence of density one of eigenfunctions is quantum ergodic in momentum space. Arnd B¨ acker 45 � ⇓ ⇐ ⇒ Σ ⊕

  21. V QET – questions Several interesting questions Do exceptional eigenfunctions exist ? E.g.: scars, bouncing ball modes, . . . (quantum limit has to be invariant under the flow!) If yes, how many are there ? The quantum ergodicity theorem implies N exceptional ( E ) = 0 . lim N ( E ) E →∞ Can one say more about N exceptional ( E ) ? How fast do quantum expectation values tend to the corresponding classical limit ? I.e., what is the rate of quantum ergodicity ? Arnd B¨ acker 46 � ⇓ ⇐ ⇒ Σ ⊕

  22. V QET — quantum limits Quantum limits (in position space) Consider the sequence of probability measures on Ω d µ n := | ψ n ( q ) | 2 d 2 q (46) Definition A measure µ ql is called quantum limit if a subse- quence of the µ n converges to µ ql . QET: for a subsequence of density one the quantum limit is d µ = d 2 q . (47) What quantum limits can occur? They have to be invariant under the flow! Arnd B¨ acker 47 � ⇓ ⇐ ⇒ Σ ⊕

  23. V QET – quantum limits (sketch of invariance) For a quantum limit µ ql consider � � a ( q ) | ψ n j | 2 d 2 q → a ( q ) d µ ql � ψ n j , Aψ n j � = (48) Ω Ω We have (where U t is the time evolution operator) � ψ n j , Aψ n j � = � ψ n j , U − t AU t ψ n j � (49) Next we use Theorem (Egorov, special case) Under certain assumptions � � U ∗ = σ ( A ) ◦ φ t σ t AU t (50) I.e.: time evolution for finite times and quantization commute in the semiclassical limit. Arnd B¨ acker 48 � ⇓ ⇐ ⇒ Σ ⊕

  24. V QET – quantum limits (sketch of invariance) For � ψ n j , Aψ n j � = � ψ n j , U − t AU t ψ n j � (51) the Egorov theorem gives � ψ n j , U − t AU t ψ n j � = � ψ n j , Op ( a ◦ φ t ) , ψ n j � + lower order terms From this: quantum limits are invariant under the flow. Possible examples: Liouville measure unstable periodic orbits collection of finitely/countably many unstable periodic orbits marginally stable orbits (eg stadium billiard) and: combinations of these Arnd B¨ acker 49 � ⇓ ⇐ ⇒ Σ ⊕

  25. V QET – eigenfunctions cardioid Arnd B¨ acker 50 � ⇓ ⇐ ⇒ Σ ⊕

  26. V QET – eigenfunctions stadium Arnd B¨ acker 51 � ⇓ ⇐ ⇒ Σ ⊕

  27. V QET – exceptional eigenfunctions Look at sequence of eigenfunctions in the cardioid billiard . . . . . . there are states, localizing around unstable periodic orbits ( “scars” ) And for the stadium billiard . . . . . .“Bouncing–Ball–Modes” : Arnd B¨ acker 52 � ⇓ ⇐ ⇒ Σ ⊕

  28. V QET – BBMs – Counting function Quantum limit for bouncing ball modes: In position space n j →∞ supp ( ψ n j ) ⊂ Ω B lim (52) and in momentum space ψ n j | 2 = δ ( p x ) δ ( p y − 1) + δ ( p y + 1) n j →∞ | � lim (53) 2 Consider counting function � � N bb ( E ) := n | ψ n is a bouncing ball mode (54) The QET implies for E → ∞ N bb ( E ) N ( E ) → 0 (55) Arnd B¨ acker 53 � ⇓ ⇐ ⇒ Σ ⊕

  29. V QET – BBMs – Counting function One can show ( [G. Tanner ’97] , [AB, R. Schubert, P. Stifter ’97] ) Stadium billiard y N bb ( E ) ∼ cE 3 / 4 L 0 B(y) Cosine billiard L(x) N bb ( E ) ∼ cE 9 / 10 x B 0 B 1 L ( x ) ∼ L 0 − C ( B 0 + x ) γ δ = 1 1 Remark: 2 + 2 + γ . For every 1 2 < δ < 1 one can find an ergodic Sinai billiard, s.t. N bb ( E ) ∼ cE δ . This suggests: the QET is sharp Recent results: [Burq,Zworski 2003], [Zelditch 2003] Arnd B¨ acker 54 � ⇓ ⇐ ⇒ Σ ⊕

  30. V BBMs – Counting function Counting function for bouncing ball modes, stadium billiard 250 N bb (E) 200 150 100 Fit to αE δ α = 0 . 20 50 δ = 0 . 76 0 E 0 2000 4000 6000 8000 10000 Arnd B¨ acker 55 � ⇓ ⇐ ⇒ Σ ⊕

  31. V BBMs – Counting function Counting function for bouncing ball modes, cosine billiard 150 N bb (E) 120 90 60 Fit to αE δ + β α = 0 . 04 30 δ = 0 . 87 β = 12 . 4 0 8000 E 0 2000 4000 6000 Arnd B¨ acker 56 � ⇓ ⇐ ⇒ Σ ⊕

  32. V BBMs – Counting function A second look at a sequence of bbm’s: Arnd B¨ acker 57 � ⇓ ⇐ ⇒ Σ ⊕

  33. V BBMs – Counting function Linear superposition ψ 321 ψ 322 � �� � “+” “ − ” sin(0 . 2 π ) ψ 321 − cos(0 . 2 π ) ψ 322 cos(0 . 2 π ) ψ 321 + sin(0 . 2 π ) ψ 322 Arnd B¨ acker 58 � ⇓ ⇐ ⇒ Σ ⊕

  34. V BBMs – Counting function Parameter variation 1700 E 1690 A’ 1680 B’ E’ F’ A B E F 1670 1.78 1.79 1.80 1.81 a 1.82 Arnd B¨ acker 59 � ⇓ ⇐ ⇒ Σ ⊕

  35. V BBMs – Counting function A A’ B B’ C C’ D’ D E E’ F F’ Arnd B¨ acker 60 � ⇓ ⇐ ⇒ Σ ⊕

  36. V QET – quasimodes (Arnold ’72) Definition A pair ( ˜ ψ, ˜ E ) , where ˜ ψ : Ω → R and ˜ E ∈ R , is called quasimode with discrepancy ǫ if || ∆ ˜ ψ + ˜ E ˜ ψ || < ǫ , where � || · || := �· , ·� Proposition (Lazutkin ’93) • The interval [ ˜ E − ǫ, ˜ E + ǫ ] contains at least one eigenvalue of − ∆ . • If there is only one eigenvalue E n with eigenfunction ψ n in this interval, then || ˜ ψ − ψ n || < Cǫ . I.e. the quasimode is an approximate eigenfunction. • If there is more than one eigenvalue in this interval � ˜ ψ ( q ) ≈ a n ψ n ( q ) . (56) E n ∈ [ ˜ E − ǫ, ˜ E + ǫ ] Arnd B¨ acker 61 � ⇓ ⇐ ⇒ Σ ⊕

  37. V QET — Scars Basic idea: Scars are eigenfunctions showing an enhanced density around an unstable periodic orbit Theoretical studies: • Heller ’84, Kaplan/Heller ’98 • Bogomolny ’88, Berry ’89 • Ozorio de Almeida ’98 • ... many others ... Problems • not really a definition • not constant in time ;-) Arnd B¨ acker 62 � ⇓ ⇐ ⇒ Σ ⊕

  38. V QET — Scars Some more details Expectation: scars should occur at around energies ) 2 where E scar = ( k scar n n � � = 2 π n + ν γ k scar (57) n l γ 4 Plot of a scar measure: (via Poincar´ e Husimi function) 2.5 2.5 2 2 1.5 1.5 1 1 0.5 0.5 0 0 2000 2200 2400 2600 2800 3000 3860 3880 3900 3920 3940 3960 Arnd B¨ acker 63 � ⇓ ⇐ ⇒ Σ ⊕

  39. V QET — Scars Eigenfunctions in the cluster: Arnd B¨ acker 64 � ⇓ ⇐ ⇒ Σ ⊕

  40. V QET — Scars difference to k scar Energies of scars: n 250 30 k n E n -E scar,n 20 200 10 0 150 -10 100 -20 -30 50 -40 0 -50 0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 n n Quite strong fluctuations !! (mean spacing: 4 π 3 π/ 4 = 16 4 π A = 3 = 5 . 333 . . . ) Arnd B¨ acker 65 � ⇓ ⇐ ⇒ Σ ⊕

  41. V QET — Scars Remark: For surfaces of constant negative curvature: no scars observed, see Aurich, Steiner ’95 Auslaender, Fishman ’98 Possible types of scars: (simplified) “super-strong scarring” : quantum limit is a δ function on a periodic orbit strong scarring: quantum limit is a δ function on a periodic orbit + Liouville measure “soft scarring” : quantum limit is the Liouville measure Arnd B¨ acker 66 � ⇓ ⇐ ⇒ Σ ⊕

  42. V QET — Scars Some results on this: • For any Anosov map on the torus: weight for scars (on a √ finite union of periodic orbit): < ( 5 − 1) / 2 ([F. Bonechi, S. De Bi´ evre 2003]) • Explicit construction of a sequence of states for the cat map for which the quantum limit is the sum of 1 / 2 Lebesgue + 1 / 2 δ on any periodic orbit. ([F. Faure, S. Nonnenmacher, S. De Bi` evre 2003]) • weight for scars (on a finite or countable union of p.o.): < 1 / 2 , ([F. Faure, S. Nonnenmacher 2003]) Arnd B¨ acker 67 � ⇓ ⇐ ⇒ Σ ⊕

  43. V QET — Scars Quantum unique ergodicity: • proven for ergodic linear parabolic maps on T 2 ([Marklof, Rudnick 2000]) • for certain cat maps: QUE for joint eigenstates with Hecke operators, ([Rudnick, Kurlberg 2000]) (not all eigenstates are of this type) • for sequences of joint eigenstates of the Laplacian and Hecke operators on arithmetic surfaces ([Lindenstrauss 2003]) (all eigenstates are conjectured to be of this type) Other extreme: • class of ergodic piecewise affine transformation on T 2 : all classical invariant measures appear as quantum limits. ([C. Chang, T. Kr¨ uger, R. Schubert, S. Troubetzkoy]) Arnd B¨ acker 68 � ⇓ ⇐ ⇒ Σ ⊕

  44. V QET and random wave model Amplitude distribution revisited 0.5 P( ψ ) 0.4 0.3 0.2 0.1 0.0 -4 -3 -2 -1 0 1 2 3 ψ 4 2.0 P( ψ ) 1.5 1.0 0.5 0.0 Analytical expression available: ψ -4 -3 -2 -1 0 1 2 3 4 Arnd B¨ acker 69 � ⇓ ⇐ ⇒ Σ ⊕

  45. V QET and random wave model Amplitude distribution for scars 0.5 P( ψ ) 0.4 0.3 0.2 0.1 0.0 ψ -4 -3 -2 -1 0 1 2 3 4 BBM and scars: Modification of the random wave conjecture Eigenfunctions of classically chaotic systems behave like random waves, but in general only for a subsequence of density one. Arnd B¨ acker 70 � ⇓ ⇐ ⇒ Σ ⊕

  46. V Sketch: proof of the QET Theorem (Szeg¨ o limit theorem) For classical pseudodifferential operators one has � 1 lim � ψ n , Aψ n � = σ ( A ) (58) N ( E ) E →∞ E n ≤ E I.e. quantum mechanical mean values approach the classical mean. Theorem (Egorov, special case) Under certain assumptions � � U ∗ = σ ( A ) ◦ φ t σ t AU t (59) I.e.: time evolution for finite times and quantization commute in the semiclassical limit. Arnd B¨ acker 71 � ⇓ ⇐ ⇒ Σ ⊕

  47. V Sketch: proof of the QET Consider now (following [R. Schubert, 2001] ) � � � 1 2 � � S 2 ( E, A ) := � � ψ n , Aψ n � − σ ( A ) . (60) � N ( E ) n : E n ≤ E Define � T A T := 1 U ∗ t [ A − σ ( A )] U t d t (61) T 0 for which (as U t | ψ n � = exp( − i tE n ) | ψ n � ) � ψ n , A T ψ n � = � ψ n , Aψ n � − σ ( A ) . (62) Thus � � � � 2 2 � � � � � � ψ n , Aψ n � − σ ( A ) = � � ψ n , A T ψ n � (63) � � ∗ A T ψ n � ≤ || A T ψ n || = � ψ n , A T (64) Arnd B¨ acker 72 � ⇓ ⇐ ⇒ Σ ⊕ Thus we get

  48. V Sketch: proof of the QET With � 1 ∗ A T ψ n � S 2 ( E, A ) ≤ � ψ n , A T (66) N ( E ) n : E n ≤ E and the Szeg¨ o limit theorem we then obtain � 1 ∗ A T ) d µ E →∞ S 2 ( E, A ) ≤ lim σ ( A T (67) vol(Σ 1 ) Σ 1 � σ ( A T ) ∗ σ ( A T ) d µ = (68) Σ 1 Applying the Egorov theorem we have � T σ ( A T )( p, q ) = 1 σ ( A ) ◦ φ t ( p, q ) d t − σ ( A ) . (69) T 0 Arnd B¨ acker 73 As the flow φ t is ergodic we get � ⇓ ⇐ ⇒ Σ ⊕

  49. V Sketch: proof of the QET Thus � � � 1 2 � � E →∞ S 2 ( E, A ) = lim lim � � ψ n , Aψ n � − σ ( A ) (71) � N ( E ) E →∞ n : E n ≤ E = 0 . (72) This is the mean value of a sequence of positive numbers. Thus there exists a subsequence { n j } of density one, such that n j →∞ � ψ n j , Aψ n j � = σ ( A ) lim (73) (see e.g. Walters) Moreover this holds for all A : diagonal argument, Zelditch ’87. Arnd B¨ acker 74 � ⇓ ⇐ ⇒ Σ ⊕

  50. V QET – Summary Eigenfunctions in strongly chaotic systems: – Random wave model – Quantum ergodicity theorem: For ergodic systems: almost all eigenfunctions become equidistributed Possible exceptional eigenfunctions: bouncing ball modes, scars, . . . – QET = ⇒ semiclassical eigenfunction hypothesis (for ergodic systems, restricted to subsequence of density one) Not discussed – Rate of quantum ergodicity S 1 ( E, A ) = aE − 1 / 4 (?) – influence of non-quantum ergodic subsequences on the rate – Gaussian (?) flucutations of � ψ n , Aψ n � . Arnd B¨ acker 75 � ⇓ ⇐ ⇒ Σ ⊕

  51. V Further topics Further topics Autocorrelation function and rate of quantum ergodicity Poincar´ e Husimi representation and quantum ergodicity Time evolution in chaotic systems Arnd B¨ acker 76 � ⇓ ⇐ ⇒ Σ ⊕

  52. VI Autocorrelation function and rate of qerg ([AB, R. Schubert 2002]) Local Autocorrelation function C loc ( q , δ x ) := ψ ∗ ( q − δ x / 2) ψ ( q + δ x / 2) . (74) In terms of the Wigner function � 1 n ( q − q ′ / 2) ψ n ( q + q ′ / 2) d q ′ , (75) e i pq ′ ψ ∗ W n ( p , q ) := (2 π ) 2 one has [Berry ’77] � W n ( p , q ) e i p δ x d p . C loc n ( q , δ x ) = (76) Arnd B¨ acker 77 � ⇓ ⇐ ⇒ Σ ⊕

  53. VI Autocorrelation function and rate of qerg For ergodic systems the quantum ergodicity theorem implies W n j ( p , q ) → δ ( H ( p , q ) − E n j ) , (77) vol(Σ E nj ) One gets for chaotic billiards in two dimensions [Berry ’77] √ 1 C loc ( q , δ x ) → vol(Ω) J 0 ( E | δ x | ) , (78) weakly as a function of q in the limit E → ∞ . Numerical tests (using a local average of C loc ( q , δ x ) ): Agreement is not too good — quite strong fluctuations Question: Can one understand/describe these results ? Arnd B¨ acker 78 � ⇓ ⇐ ⇒ Σ ⊕

  54. VI Autocorrelation function and rate of qerg P( Ψ ) 0.4 0.3 0.2 0.1 0 -4 -2 0 2 4 Ψ 1.0 θ =0 C(r, θ ) θ = π /4 θ = π /2 J 0 (r) 0.6 0.2 -0.2 -0.6 0 4 8 12 16 r 20 Arnd B¨ acker 79 � ⇓ ⇐ ⇒ Σ ⊕

  55. VI Autocorrelation function and rate of qerg Correlation length expansion �� √ E d p d q . ρ ( q − q ) W ( p , q ) e i p δ x / C ρ ( q , δ x ) = (79) For ρ = 1 one gets ∞ � ( − 1) l � J 2 l ( | δ x | ) + O ( E − 1 / 2 � C ( δ x ) = J 0 ( | δ x | ) + 2 π a 2 l cos(2 lθ ) + b 2 l sin(2 lθ ) l =1 where the coefficients a 2 l and b 2 l are the Fourier coefficients 2 π 2 π a 2 l = 1 b 2 l = 1 � � I ( ϕ ) cos(2 lϕ ) d ϕ I ( ϕ ) sin(2 lϕ ) d ϕ , (80) π π 0 0 of the radially integrated momentum density [ ˙ Zyczkowski ’92; AB, Schubert ’99] ∞ � | ˆ ψ ( r e ( ϕ )) | 2 r d r . I ( ϕ ) := (81) 0 Arnd B¨ acker 80 � ⇓ ⇐ ⇒ Σ ⊕

  56. VI Autocorrelation function and rate of qerg Relation to the rate of quantum ergodicity ∞ � ( − 1) l � J 2 l ( | δ x | ) + O ( E − 1 / 2 ) , � C ( δ x ) = J 0 ( | δ x | ) + 2 π a 2 l cos(2 lθ ) + b 2 l sin(2 lθ ) l =1 If the classical system is ergodic and ψ n j is a quantum ergodic sequence of eigenfunctions, then for j → ∞ � ψ n j , ˆ A 2 l ( q ) ψ n j � ∼ a 2 l = δ l 0 (82) � ψ n j , ˆ B 2 l ( q ) ψ n j � ∼ b 2 l = 0 . (83) Thus for E → ∞ we recover C ( r, θ ) = J 0 ( r ) . Deviations are determined by the rate of quantum ergodicity . Arnd B¨ acker 81 � ⇓ ⇐ ⇒ Σ ⊕

  57. VI Autocorrelation function and rate of qerg Removing the angular dependence As � 2 π 1 C ( r, θ ) d θ = J 0 ( r ) + O ( E − 1 / 2 ) , (84) 2 π 0 we consider the second moment, � 2 π 1 [ C ( r, θ ) − J 0 ( r )] 2 d θ . σ 2 ( r ) := (85) 2 π 0 Inserting the expansion of the autocorrelation function C ( δ x ) ∞ � 2 l )[ J 2 l ( r )] 2 (1 + O ( E − 1 / 2 )) . σ 2 ( r ) = 2 π 2 ( a 2 2 l + b 2 (86) l =1 Arnd B¨ acker 82 � ⇓ ⇐ ⇒ Σ ⊕

  58. VI Autocorrelation function and rate of qerg Second moment σ 2 ( r ) 2 π 1 Z [ C ( r, θ ) − J 0 ( r )] 2 d θ . σ 2 ( r ) := (87) 2 π 0 Expansion gives ∞ 2 l )[ J 2 l ( r )] 2 (1 + O ( E − 1 / 2 )) . X σ 2 ( r ) = 2 π 2 ( a 2 2 l + b 2 (88) l =1 0.04 0.0012 σ 2 (r) difference 0.0008 0.03 0.0004 0.0000 -0.0004 r 0 10 20 30 40 0.02 0.01 numeric expansion 0.00 0 20 40 60 80 r 100 Arnd B¨ acker 83 � ⇓ ⇐ ⇒ Σ ⊕

  59. VI Autocorrelation function and rate of qerg According to [Eckhardt et. al. ’95] we expect in the mean (under suitable conditions on the system) � � 2 ∼ 4 σ 2 � 1 cl ( A ) 1 � ψ n j , ˆ √ Aψ n j � − A (89) N ( E ) vol(Ω) E E n ≤ E for any pseudodifferential operator ˆ A of order zero with symbol A . √ Here A denotes the mean value of A , and σ cl ( A ) / T is the variance of the fluctuations of � 1 A ( p ( t ) , q ( t )) d t (90) T T around A . Arnd B¨ acker 84 � ⇓ ⇐ ⇒ Σ ⊕

  60. VI Autocorrelation function and rate of qerg Considering the mean of this function over all eigenfunctions up to energy E , and combining the previous � � � 2 ∼ 4 σ 2 1 cl ( A ) 1 � ψ n j , ˆ √ Aψ n j � − A (91) N ( E ) vol(Ω) E E n ≤ E and ∞ � 2 l )[ J 2 l ( r )] 2 (1 + O ( E − 1 / 2 )) . σ 2 ( r ) = 2 π 2 ( a 2 2 l + b 2 (92) l =1 we get � 1 σ 2 ( E, r ) := σ 2 n ( r ) (93) N ( E ) E n ≤ E ∞ � 8 π 2 � σ cl ( A 2 l ) 2 + σ cl ( B 2 l ) 2 � 1 [ J 2 l ( r )] 2 √ ∼ E . vol(Ω) l =1 Arnd B¨ acker 85 � ⇓ ⇐ ⇒ Σ ⊕

  61. VI Autocorrelation fct and rate of qerg – Summary Origin of fluctuations around J 0 ( r ) : deviations from quantum ergodicity at finite energies Thus: Autocorrelation function allows to study the rate of quantum ergodicity! Remarks on σ 2 ( E, r ) : – Efficient quantity to measure the dependence of the rate of quantum ergodicity on different length scales. – For larger r ≡ | δ x | , one needs to incorporate higher terms in l which corresponds to expectation values of faster oscillating observables. Arnd B¨ acker 86 � ⇓ ⇐ ⇒ Σ ⊕

  62. VII More recent results – Poincar´ e Husimi representation Question: Poincar´ e representation of eigenstates? AB, S. F¨ urstberger, R. Schubert: Poincar´ e Husimi representation of eigenstates in quantum billiards (2003) Natural starting point: normal derivative of the eigenfunction u n ( s ) := � ˆ n ( s ) , ∇ ψ n ( x ( s )) � , (94) Coherent states on the billiard boundary ∂ Ω � k � 1 / 4 � 2 σ ( s − q + mL ) 2 ] , e i k [ p ( s − q + mL )+ i c b ( q,p ) ,k ( s ) := (95) πσ m ∈ Z where ( q, p ) ∈ ∂ Ω × R . � � 2 � � � � c b h n ( q, p ) = ( q,p ) ,k , u n � Husimi function: (96) � Arnd B¨ acker 87 � ⇓ ⇐ ⇒ Σ ⊕

  63. VII More recent results – Poincar´ e Husimi representation Husimi function on the Poincar´ e section P : � � 2 � � � � � 1 � � c b h n ( q, p ) = ( q,p ) ,k n ( s ) u n ( s ) d s . (97) � � 2 πk n � � � � ∂ Ω ([Crespi, Perez, Chang ’93; Tualle,Voros ’95]) Alternative Poincar´ e Husimi representation: � � 2 � � � � � c b ( q,p ) ,k n ( s ) u n ( s ) � ˆ n ( s ) , x ( s ) � d s � � � � 1 ∂ Ω � � h n ( q, p ) = (98) c b 2 k 2 ( q,p ) ,k n ( s ) c b ( q,p ) ,k n ( s ) � ˆ n ( s ) , x ( s ) � d s n ∂ Ω ([Simonotti,Vergini,Saraceno ’97]) Arnd B¨ acker 88 � ⇓ ⇐ ⇒ Σ ⊕

  64. VII Poincar´ e Husimi functions – examples 1277: 1817: Arnd B¨ acker 89 � ⇓ ⇐ ⇒ Σ ⊕

  65. VII Poincar´ e Husimi representation – mean behaviour Mean behaviour: For Husimi functions in phase space: � 1 1 H B π vol (Ω) χ Ω ( q ) δ (1 − | p | 2 ) . lim n ( p , q ) = N ( k ) k →∞ k n ≤ k And on the boundary? � 1 h n ( q, p ) → ? H k ( q, p ) := N ( k ) k n ≤ k Arnd B¨ acker 90 � ⇓ ⇐ ⇒ Σ ⊕

  66. VII Poincar´ e Husimi representation – mean behaviour � 1 Plot of H k ( q, p ) := h n ( q, p ) N ( k ) k n ≤ k Variant 1 Variant 2 a) b) 0.2 0.3 0.2 0.1 0.1 0.0 0.0 L L q q L /2 L /2 1.5 1.5 0.0 0.0 0 0 p p -1.5 -1.5 Arnd B¨ acker 91 � ⇓ ⇐ ⇒ Σ ⊕

  67. VII Poincar´ e Husimi representation – mean behaviour Analytically we show � � 1 h n ( q, p ) = 2 1 − p 2 + O ( k − 1 / 2 ) , H k ( q, p ) ≡ N ( k ) Aπ k n ≤ k Uniform asymptotics 1.0 k =10 k =30 k =500 0.8 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 p Arnd B¨ acker 92 � ⇓ ⇐ ⇒ Σ ⊕

  68. VII Poincar´ e Husimi representation – mean behaviour Numerical comparison of the mean behaviour Section of H k ( q, p ) at q = 3 . 0 0.15 red: numerical result 0.10 blue: uniform 0.05 semiclassics 0.00 p -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Question: Does the ad-hoc definition of the Poincar´ e Husimi functions make sense ? Arnd B¨ acker 93 � ⇓ ⇐ ⇒ Σ ⊕

  69. VII From phase space to the Poincar´ e section Approach: project coherent state in phase space onto boundary q −p x(q) Arnd B¨ acker 94 � ⇓ ⇐ ⇒ Σ ⊕

  70. VII Relation between Husimi functions We show H n ( p , q ) = δ k n (1 − | p | ) 1 h n ( q, p ) 1 − p 2 (1 + O ( k − 1 / 2 � )) , (99) n 4 with � k n � 1 / 2 e − k n (1 −| p | ) 2 . δ k n (1 − | p | ) := (100) π Consequence 1 h n ( q, p ) � � 1 − p 2 � a � ( q, p ) l ( q, p ) d q d p + O ( k − 1 / 2 � ψ n , A ψ n � Ω = ) , (101) n � 4 − 1 ∂ Ω where l ( q, p ) is the length of the orbit segment. Thus: physical interpretation of the Poincar´ e Husimi functions! Arnd B¨ acker 95 � ⇓ ⇐ ⇒ Σ ⊕

  71. VII Quantum ergodicity for Poincar´ e Husimi functions For ergodic systems the quantum ergodicity theorem implies 1 • almost all Husimi functions H n ( p , q ) tend weakly to 2 π vol(Ω) . The relation 1 � � h n ( q, p ) 1 − p 2 � a � ( q, p ) l ( q, p ) d q d p + O ( k − 1 / 2 � ψ n , A ψ n � Ω = ) , (102) n � 4 − 1 ∂ Ω then implies that almost all Poincar´ e Husimi functions � 2 1 − p 2 h n ( q, p ) → (103) π vol(Ω) in the semiclassical limit (in the weak sense). I.e.: Quantum ergodicity theorem for the Poincar´ e Husimi functions Arnd B¨ acker 96 � ⇓ ⇐ ⇒ Σ ⊕

  72. VII Poincar´ e Husimi functions — Summary a) • Mean behaviour of 0.2 Poincar´ e Husimi functions: 0.1 � 0.0 1 − p 2 ∼ L q L /2 1.5 • Relation between 0.0 0 p -1.5 – Husimi functions in phase space and – Poincar´ e Husimi functions. Consequences: – physical interpretation and justification of the previous ad-hoc definitions – quantum ergodicity theorem for the Poincar´ e Husimi functions Arnd B¨ acker 97 � ⇓ ⇐ ⇒ Σ ⊕

  73. VIII More recent results – Time evolution Numerical experiment: Start with coherent state � k � 1 / 2 2 � x − q , ( x − q ) � ] , e i k [ � p , x − q � + i Coh ( p , q ) ,k ( x ) := (104) π where ( p , q ) ∈ R 2 × R 2 denotes the point in phase space around which the coherent state is localized. START Observation: follows classical trajectory for some time Arnd B¨ acker 98 � ⇓ ⇐ ⇒ Σ ⊕

  74. VIII Time evolution Two more examples: What happens for large times? Conjecture: Random wave description START is possible! Arnd B¨ acker 99 � ⇓ ⇐ ⇒ Σ ⊕

  75. VIII Time evolution Conjecture: For chaotic systems the time evolution of an initially localized wavepacket leads to a random state in the limit of large times. One consequence: Gaussian distribution for the components (real and imaginary) of ψ ( q , t ) Or: P ( | ψ | 2 ) = exp( − ψ ) Consider amplitude distribution... Arnd B¨ acker 100 � ⇓ ⇐ ⇒ Σ ⊕

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend