asking for a high p t photon in higgs production at lhc
play

Asking for a high-p T photon in Higgs production at LHC - PowerPoint PPT Presentation

GGI, Florence, 28 Oct. 2009 The Search for New States and Forces of Nature Asking for a high-p T photon in Higgs production at LHC Barbara Mele Sezione di Roma focus on two processes : pp H ( bb) 2j + (in the SM) q q


  1. GGI, Florence, 28 Oct. 2009 The Search for New States and Forces of Nature Asking for a high-p T photon in Higgs production at LHC Barbara Mele Sezione di Roma

  2. focus on two processes : ‣ pp → H ( → bb) 2j + γ (in the SM) q q’ Gabrielli, Maltoni, B.M., M.Moretti, W � Piccinini, Pittau, NPB 781 (2007) 64 H W q’ q ‣ pp → H / A ( → ττ ) + γ (in the MSSM) γ b Gabrielli, B.M., Rathsman, b PRD 77 (2008) 015007 _ A / H b Barbara Mele 2 GGI 28/10/2009

  3. HIGGS TOTAL CROSS SECTIONS m H (GeV) σ gg [pb] σ VBF [pb] M. Spira Fortsch. Phys. 46 (1998) 120 42 4.4 � (pp � H+X) [ pb ] 10 2 � s = 14 TeV 140 33 3.8 M t = 175 GeV gg � H 10 CTEQ4M 200 18 2.5 1 qq � Hqq _ ’ � HW -1 qq 10 300 10 1.4 -2 10 _ � Htt _ gg,qq -3 10 _ � Hbb _ _ � HZ gg,qq qq -4 10 t, b H 0 200 400 600 800 1000 W, Z H M H [ GeV ] different final states ! Barbara Mele 3 GGI 28/10/2009

  4. but interesting σ ’ s are of the order of few fb’s ( after BR’s + cuts for enhancing signal/bckg ) GOLDEN CHANNEL ! Significance -1 CMS, 30 fb H → ZZ → 4 l 10 ) [fb] e 1 5 µ Z ( ∗ ) 4 � e + 1 H 4 H cuts (*) � � � e − 2 ZZ H opt Z ( ∗ ) � � � � 3 e + 2 Br(H H ZZ 4l � � H WW 2l2 2 � � � � NLO qqH, H WW l jj � � � 1 � qqH, H l+jet � � � � 0 qqH, H � � � 100 200 300 400 500 600 2 1 m [GeV/c ] H 100 200 300 400 500 600 σ × BR (H → 4 μ ) < 6 fb 2 M (GeV/c ) focus on H m H ~ 120 GeV Barbara Mele 4 GGI 28/10/2009 w mass:

  5. Hbb coupling dominant in light-H decay ! [ BR(H ➞ bb) ~ 70% at m H ~ 120 GeV ] but QCD bb continuum tends to swamp any EW bb resonance at hadron colliders ! Can one constrain the Hbb coupling at all ? Barbara Mele 5 GGI 28/10/2009

  6. Constraining Hbb coupling for light H most studied channel : pp → ttH → ttbb after including detector simulation, initial “optimistic” expectations vanished ! CMS PTDR, CERN LHCC-2006-021 Also, an expected k~1.8 factor on bckgd at NLO *** CERN-OPEN-2008-020 makes everything even worse ! (***Bredenstein, Denner, Dittmaier, Pozzorini, arXiv:0905.0110 ) Barbara Mele 6 GGI 28/10/2009

  7. Alternatives : pp  H (  bb) + 2j (VBF fusion) light Jets with large invariant mass widely separated in rapidity (forward/backward) Higgs decay products lying at intermediate rapidity q q’ µ W , Z b b H jet H W , Z q q’ jet potential difficult to assess (4-jet final state...???) Mangano, Moretti, Piccinini, Pittau, Polosa (2003) Barbara Mele 7 GGI 28/10/2009

  8. recent proposal : Butterworth, Davison, Rubin and Salam, 2008 new strategy for pp → H ( → bb) W,Z ( → ℓℓ ’) ❄

 increase ( tiny ) S/B for pp → HW(Z) → bb ℓℓ ’ by looking to events with very high-p T H and W(Z) (p T >200,300 GeV) → S/B improves ( but σ drops ...) ! challenge : high-p T H → bb quite collimated → may give a single jet → using a (QCD-motivated) subjet analysis could help ! R 200GeV R = 1.2 Eff = 70% (1%) (b) R filt b b R bb 7 300GeV R = 0.7 Eff = 70% (1%) 200GeV R = 1.2 Eff = 60% (2%) R bb g mass drop filter 300GeV R = 0.7 Eff = 60% (2%) 6 Significance values. 5 p ������������ � S = fb � B = fb S= B � fb Jet definition 4 CA, R � 1 : 2 , MD-F 0.57 0.51 0.80 K ? , R � 1 : 0 , y cut 0.19 0.74 0.22 3 L=30 fb -1 SISCONE , R � 0 : 8 0.49 1.33 0.42 2 Cross section for signal and the Z � jets back- TABLE I. 114 116 118 120 122 124 126 128 130 ground in the leptonic Z channel for 200 < p TZ = GeV < 600 Higgs Mass (GeV) and 110 < m J = GeV < 125 , with perfect b -tagging; shown for to be validated by complete our jet definition, and other standard ones at near optimal R detector simulation ! values. Barbara Mele 8 GGI 28/10/2009

  9. γγ collisions in p Pb → p H ( → bb) Pb In the followin d ʼ Enterria and Lansberg arXiv:0909.3047 γ γ γ γ p Pb → X H Pb e p Pb → p H Pb ( − − − − given E p ~ 7 TeV (B~8.3 T) p p X p → E N(Z,A) ~ Ep x Z/A u , d , ¯ u , ¯ d , . . . ¯ b γ ¯ → p-Pb b γ at √ s NN = 8.8 TeV. H H pp collisions. First, com γ b γ b r: L pPb ∼ 10 31 cm − 2 s − 1 v γ γ A A A A (b) Semielastic case (a) Elastic case ] ] 2 2 -1 pPb @ s =8.8 TeV, 300 pb yield/[7 GeV/c yield/[7 GeV/c o Pb increases γ flux (~Z 2 ), and kills 18 18 2 m = 120 GeV/c H H b b � 16 16 pile-up (low lumi) b b � � � 14 14 o p increases γ -flux end-point and lumi 12 12 10 10 8 8 m H =120 GeV Higgs observed with 6 6 4 4 S/ √ B ~ 3 after 3-year run 2 2 0 0 100 105 110 115 120 125 130 135 140 100 105 110 115 120 125 130 135 140 Barbara Mele 9 GGI 28/10/2009 2 2 m m (GeV/c (GeV/c ) ) b b b b

  10. summing up measurement of g Hbb challenging at LHC ! LHC potential not yet really established ! Barbara Mele GGI 28/10/2009 10

  11. New Channel : (Gabrielli, Maltoni, B.M., M. Moretti, Piccinini, Pittau, 2007) require a further central photon from VBF pp  H (  bb) + 2j + γ γ b increases triggering J efficiency ! J m H (GeV) 110 120 130 140 σ ( H γ jj ) [ fb ] 67.4 64.0 60.4 56.1 b BR ( H → b ¯ b ) 0.770 0.678 0.525 0.341 d ( ∆ R γ j > 0 . 4, p γ T ≥ 20 GeV, and m jj > 100 GeV). Barbara Mele 11 GGI 28/10/2009

  12. qq  qq H + γ � q’ q q’ q’ q q W � W,Z W,Z H H H W,Z W,Z W q’ q q’ q q q’ � � q q’ q q’ q q’ W,Z W W,Z H H H � W,Z W,Z W q’ q’ q’ q q q � from naive QED scaling : √ √ √ B ) | H γ jj ∼ √ α ( S/ B ) | H jj < ( S/ ∼ 1 / 10 ( S/ B ) | H jj Actual S/ √ B much better than this !!!! Barbara Mele 12 GGI 28/10/2009

  13. IRREDUCIBLE BCKGD add a photon to (gluons are idle !) (q , g) (q , g) (q , g) (q , g) (q , g) (q , g) b g g g � b b b g g � � b b g g (q , g) (q , g) (q , g) (q , g) (q , g) (q , g) t,u -channel (most relevant !) (q , g) b � � (q , g) b (q , g) (q , g) (q , g) (q , g) (q , g) b b (q , g) g g (q , g) b g g � . b g � g � (q , g) g g g g (q , g) � � � � � � � b (q , g) (q , g) (q , g) (q , g) b (q , g) s-channel (suppressed at M jj ~ 1TeV) Barbara Mele 13 GGI 28/10/2009

  14. Also, destructive interf.s in central γ emissions off q in and q fin in a t-channel gluon diagram (“coherence” effect) � � q q q { q g g b b bckg suppressed by � � b b g g (q , g) (q , g) (q , g) (q , g) requiring a central photon by O(1/10) compared to (q , g) (q , g) (q , g) (q , g) { naive QED scaling! g g b b � � b b g g q q q q (c) � (q , g) (q , g) (q , g) (q , g) (q , g) (q , g) dominant contribut. � g g g � b b (suppressed by b-quark b � � � � b b electric charge) b g g g (q , g) (q , g) (q , g) (q , g) (q , g) (q , g) Barbara Mele 14 GGI 28/10/2009

  15. switching off the γ bb coupling in irred. bckg photon rapidity distr.s (optimized cuts) Barbara Mele 15 GGI 28/10/2009

  16. what about signal ? W charged current spoils destructive interference at large angle ! σ ( C ) ( H γ jj ) σ ( C ) ( H jj ) = 0 . 013 , (WW → H) but Z neutral current follows BCKG pattern !!! σ ( N ) ( H γ jj ) (ZZ → H) σ ( N ) ( H jj ) = 0 . 0016 s p γ T ≥ 20 GeV, , | η γ | < central photon singles out WW over ZZ fusion !!! ∼ 2 . 5, d ∆ R j γ ≥ 0 . 7, Barbara Mele 16 GGI 28/10/2009

  17. basic cuts : EVENT SELECTION p j p b T ≥ 30 GeV , T ≥ 30 GeV , ∆ R ik ≥ 0 . 7 , | η γ | ≤ 2 . 5 , | η b | ≤ 2 . 5 , | η j | ≤ 5 , m jj > 400 GeV , m H (1 − 10%) ≤ m b ¯ b ≤ m H (1 + 10%) , { 1) p γ T ≥ 20 GeV , then, look at distrib’s : 2) p γ T ≥ 30 GeV , d σ d σ d σ d σ d σ , , , , | ∆ η jj | , dp j 1 dp b 1 dm jj dm γ H T T add optimized cuts : p j 1 p b 1 m jj ≥ 800 GeV , T ≥ 60 GeV , T ≥ 60 GeV , | ∆ η jj | > 4 , m γ H ≥ 160 GeV , ∆ R γ b/ γ j ≥ 1 . 2 . well isolated photon Barbara Mele 17 GGI 28/10/2009

  18. m jj distribution critical to enhance S/B ( even more than in plain VBF !!! ) S B Barbara Mele 18 GGI 28/10/2009

  19. p T (b1) p T (j1) m( γ H) Δ η (jj) Barbara Mele 19 GGI 28/10/2009

  20. irreducible bckgr σ ’s (optimized cuts) s p γ T ≥ 20 GeV, sub-processes σ i (pb) σ i / σ σ γ (fb) σ γ i / σ γ i gq → b ¯ b gq ( γ ) 57.2(1) 55.3 % 17.3(1) 51.6 % gg → b ¯ b gg ( γ ) 25.2(1) 24.4 % 3.93(3) 11.7 % b qq � ( γ ) qq � → b ¯ 7.76(3) 7.5 % 4.04(2) 12.1 % qq → b ¯ b qq ( γ ) 6.52(2) 6.3 % 4.49(3) 13.4 % q � ( γ ) q � → b ¯ q ¯ b q ¯ 4.60(2) 4.4 % 2.28(2) 6.8 % q → b ¯ q ¯ b q ¯ q ( γ ) 2.13(2) 2.1 % 1.21(2) 3.6 % gg → b ¯ b q ¯ q ( γ ) 0.0332(7) 0.03 % 0.124(3) 0.37 % q → b ¯ q ¯ b gg ( γ ) 0.0137(2) 0.01 % 0.094(2) 0.28 % q � ( γ ) q → b ¯ q ¯ b q � ¯ 0.000080(3) 0.00007 % 0.00080(8) 0.002 % ( m H =120 GeV ) bckg ( γ ) / bckg ~ 33 fb / 103 pb ~ 1/3000 cf. signal( γ ) / signal ~ 1/100 note : conservative choice of QCD scales in the bckg evaluation ! Barbara Mele 20 GGI 28/10/2009

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend