jack wavefunctions and w theories
play

Jack wavefunctions and W theories Benoit Estienne joint work with - PowerPoint PPT Presentation

Jack wavefunctions and W theories Benoit Estienne joint work with Raoul Santachiara LPTHE Universit e Pierre et Marie Curie, Paris-6 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 1 / 33 CFT, Jacks and trial


  1. Symmetric Polynomials Monomial basis { m λ } The monomial function m λ is a symmetric polynomial in n variables { z i , i = 1 , . . . , n } : n � z λ i m λ ( { z i } ) = S ( i ) i =1 Partitions λ = ( λ 1 , . . . , λ N ) λ i are positive integers λ i > λ i +1 For λ = (4 , 4 , 2 , 1 , 1) : � � z 4 1 z 4 2 z 2 m λ = S 3 z 4 z 5 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 5 / 33

  2. Symmetric Polynomials Monomial basis { m λ } The monomial function m λ is a symmetric polynomial in n variables { z i , i = 1 , . . . , n } : n � z λ i m λ ( { z i } ) = S ( i ) i =1 Partitions λ = ( λ 1 , . . . , λ N ) λ 1 λ i are positive integers λ 2 λ i > λ i +1 λ 3 λ 4 For λ = (4 , 4 , 2 , 1 , 1) : λ 5 � � z 4 1 z 4 2 z 2 m λ = S 3 z 4 z 5 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 5 / 33

  3. Jack Polynomials J α λ ( z 1 , · · · , z N ) symmetric and homogeneous polynomials of N variables indexed by partitions λ = ( λ 1 , λ 2 , . . . , λ N ) depend rationally on a parameter α : the expansion over the m λ basis takes the form � J α λ = m λ + u λµ ( α ) m µ . µ<λ The Jacks J α λ are eigenfunctions of the Calogero-Sutherland Hamiltonian : N ( z i ∂ i ) 2 + 1 z i + z j � � H CS( α ) = ( z i ∂ i − z j ∂ j ) α z i − z j i =1 i < j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 6 / 33

  4. Jack Polynomials J α λ ( z 1 , · · · , z N ) symmetric and homogeneous polynomials of N variables indexed by partitions λ = ( λ 1 , λ 2 , . . . , λ N ) depend rationally on a parameter α : the expansion over the m λ basis takes the form � J α λ = m λ + u λµ ( α ) m µ . µ<λ The Jacks J α λ are eigenfunctions of the Calogero-Sutherland Hamiltonian : N ( z i ∂ i ) 2 + 1 z i + z j � � H CS( α ) = ( z i ∂ i − z j ∂ j ) α z i − z j i =1 i < j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 6 / 33

  5. Jack Polynomials J α λ ( z 1 , · · · , z N ) symmetric and homogeneous polynomials of N variables indexed by partitions λ = ( λ 1 , λ 2 , . . . , λ N ) depend rationally on a parameter α : the expansion over the m λ basis takes the form � J α λ = m λ + u λµ ( α ) m µ . µ<λ The Jacks J α λ are eigenfunctions of the Calogero-Sutherland Hamiltonian : N ( z i ∂ i ) 2 + 1 z i + z j � � H CS( α ) = ( z i ∂ i − z j ∂ j ) α z i − z j i =1 i < j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 6 / 33

  6. Jack Polynomials J α λ ( z 1 , · · · , z N ) symmetric and homogeneous polynomials of N variables indexed by partitions λ = ( λ 1 , λ 2 , . . . , λ N ) depend rationally on a parameter α : the expansion over the m λ basis takes the form � J α λ = m λ + u λµ ( α ) m µ . µ<λ The Jacks J α λ are eigenfunctions of the Calogero-Sutherland Hamiltonian : N ( z i ∂ i ) 2 + 1 z i + z j � � H CS( α ) = ( z i ∂ i − z j ∂ j ) α z i − z j i =1 i < j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 6 / 33

  7. Jacks wavefunction ( k , r ) admissible partitions λ i − λ i + k ≥ r Jack Polynomials with ( k , r ) clustering properties for the special value α = − ( k + 1) / ( r − 1) and for a ( k , r ) admissible partition λ [Feigin et al (2001) ] These Jacks are well defined. They have generalized clustering properties : they vanish as r powers when k + 1 particles come to the same point. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 7 / 33

  8. Jacks wavefunction ( k , r ) admissible partitions λ 1 ≥ λ 3 + 2 λ i − λ i + k ≥ r λ 3 Jack Polynomials with ( k , r ) clustering properties for the special value α = − ( k + 1) / ( r − 1) and for a ( k , r ) admissible partition λ [Feigin et al (2001) ] These Jacks are well defined. They have generalized clustering properties : they vanish as r powers when k + 1 particles come to the same point. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 7 / 33

  9. Jacks wavefunction ( k , r ) admissible partitions λ i − λ i + k ≥ r λ 2 ≥ λ 4 + 2 λ 4 Jack Polynomials with ( k , r ) clustering properties for the special value α = − ( k + 1) / ( r − 1) and for a ( k , r ) admissible partition λ [Feigin et al (2001) ] These Jacks are well defined. They have generalized clustering properties : they vanish as r powers when k + 1 particles come to the same point. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 7 / 33

  10. Jacks wavefunction ( k , r ) admissible partitions λ i − λ i + k ≥ r (2 , 2) admissible Jack Polynomials with ( k , r ) clustering properties for the special value α = − ( k + 1) / ( r − 1) and for a ( k , r ) admissible partition λ [Feigin et al (2001) ] These Jacks are well defined. They have generalized clustering properties : they vanish as r powers when k + 1 particles come to the same point. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 7 / 33

  11. Jacks wavefunction ( k , r ) admissible partitions λ i − λ i + k ≥ r (2 , 2) admissible Jack Polynomials with ( k , r ) clustering properties for the special value α = − ( k + 1) / ( r − 1) and for a ( k , r ) admissible partition λ [Feigin et al (2001) ] These Jacks are well defined. They have generalized clustering properties : they vanish as r powers when k + 1 particles come to the same point. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 7 / 33

  12. Jacks wavefunction ( k , r ) admissible partitions λ i − λ i + k ≥ r (2 , 2) admissible Jack Polynomials with ( k , r ) clustering properties for the special value α = − ( k + 1) / ( r − 1) and for a ( k , r ) admissible partition λ [Feigin et al (2001) ] These Jacks are well defined. They have generalized clustering properties : they vanish as r powers when k + 1 particles come to the same point. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 7 / 33

  13. Jacks wavefunction ( k , r ) admissible partitions λ i − λ i + k ≥ r (2 , 2) admissible Jack Polynomials with ( k , r ) clustering properties for the special value α = − ( k + 1) / ( r − 1) and for a ( k , r ) admissible partition λ [Feigin et al (2001) ] These Jacks are well defined. They have generalized clustering properties : they vanish as r powers when k + 1 particles come to the same point. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 7 / 33

  14. Jacks wavefunction ( k , r ) admissible partitions λ i − λ i + k ≥ r (2 , 2) admissible Jack Polynomials with ( k , r ) clustering properties for the special value α = − ( k + 1) / ( r − 1) and for a ( k , r ) admissible partition λ [Feigin et al (2001) ] These Jacks are well defined. They have generalized clustering properties : they vanish as r powers when k + 1 particles come to the same point. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 7 / 33

  15. Jacks wavefunction ( k , r ) admissible partitions λ i − λ i + k ≥ r (2 , 2) admissible Jack Polynomials with ( k , r ) clustering properties for the special value α = − ( k + 1) / ( r − 1) and for a ( k , r ) admissible partition λ [Feigin et al (2001) ] These Jacks are well defined. They have generalized clustering properties : they vanish as r powers when k + 1 particles come to the same point. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 7 / 33

  16. Jacks wavefunction ( k , r ) admissible partitions λ i − λ i + k ≥ r (2 , 2) admissible Jack Polynomials with ( k , r ) clustering properties for the special value α = − ( k + 1) / ( r − 1) and for a ( k , r ) admissible partition λ [Feigin et al (2001) ] These Jacks are well defined. They have generalized clustering properties : they vanish as r powers when k + 1 particles come to the same point. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 7 / 33

  17. Jack Polynomials at α = − ( k + 1) / ( r − 1) Densest ( k , r ) admissible partitions The root partition for the wavefunction with the highest density is given by the occupation numbers k λ = [ k 00 . . . 0 k 00 . . . 0 k . . . ] r � �� � � �� � r − 1 r − 1 Trial wavefunctions generalizing the Read-Rezayi states These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [ Bernevig and Haldane (2007) ] at (bosonic) filling fraction ν = k / r r = 2 boils down to the Read-Rezayi Z k state conjectured to be connected to W conformal field theories Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 8 / 33

  18. Jack Polynomials at α = − ( k + 1) / ( r − 1) Densest ( k , r ) admissible partitions The root partition for the wavefunction with the highest density is given by the occupation numbers k λ = [ k 00 . . . 0 k 00 . . . 0 k . . . ] r � �� � � �� � r − 1 r − 1 Trial wavefunctions generalizing the Read-Rezayi states These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [ Bernevig and Haldane (2007) ] at (bosonic) filling fraction ν = k / r r = 2 boils down to the Read-Rezayi Z k state conjectured to be connected to W conformal field theories Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 8 / 33

  19. Jack Polynomials at α = − ( k + 1) / ( r − 1) Densest ( k , r ) admissible partitions The root partition for the wavefunction with the highest density is given by the occupation numbers k λ = [ k 00 . . . 0 k 00 . . . 0 k . . . ] r � �� � � �� � r − 1 r − 1 Trial wavefunctions generalizing the Read-Rezayi states These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [ Bernevig and Haldane (2007) ] at (bosonic) filling fraction ν = k / r r = 2 boils down to the Read-Rezayi Z k state conjectured to be connected to W conformal field theories Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 8 / 33

  20. Jack Polynomials at α = − ( k + 1) / ( r − 1) Densest ( k , r ) admissible partitions The root partition for the wavefunction with the highest density is given by the occupation numbers k λ = [ k 00 . . . 0 k 00 . . . 0 k . . . ] r � �� � � �� � r − 1 r − 1 Trial wavefunctions generalizing the Read-Rezayi states These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [ Bernevig and Haldane (2007) ] at (bosonic) filling fraction ν = k / r r = 2 boils down to the Read-Rezayi Z k state conjectured to be connected to W conformal field theories Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 8 / 33

  21. Jack Polynomials at α = − ( k + 1) / ( r − 1) Densest ( k , r ) admissible partitions The root partition for the wavefunction with the highest density is given by the occupation numbers k λ = [ k 00 . . . 0 k 00 . . . 0 k . . . ] r � �� � � �� � r − 1 r − 1 Trial wavefunctions generalizing the Read-Rezayi states These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [ Bernevig and Haldane (2007) ] at (bosonic) filling fraction ν = k / r r = 2 boils down to the Read-Rezayi Z k state conjectured to be connected to W conformal field theories Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 8 / 33

  22. Jack Polynomials at α = − ( k + 1) / ( r − 1) Densest ( k , r ) admissible partitions The root partition for the wavefunction with the highest density is given by the occupation numbers k λ = [ k 00 . . . 0 k 00 . . . 0 k . . . ] r � �� � � �� � r − 1 r − 1 Trial wavefunctions generalizing the Read-Rezayi states These Jacks have been considered as trial many-body wavefunctions for non-Ablian FQH states [ Bernevig and Haldane (2007) ] at (bosonic) filling fraction ν = k / r r = 2 boils down to the Read-Rezayi Z k state conjectured to be connected to W conformal field theories Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 8 / 33

  23. Conformal field theories as wavefunctions generators To describe a N particles quantum Hall ground state, a polynomial P N ( { z i } ) has to be a SU (2) spin singlet : � L − P N = i ∂ i P N ( { z i } ) = 0 � � � z i ∂ i − N φ L z P N = P N ( { z i } ) = 0 i 2 � � � L + P N = − z 2 i ∂ i + z i N φ P N ( { z i } ) = 0 i All these properties are automatically ensured by global conformal invariance for single channel correlators : � ( z i − z j ) γ � Φ( z 1 ) . . . Φ( z N ) � i < j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 9 / 33

  24. Conformal field theories as wavefunctions generators To describe a N particles quantum Hall ground state, a polynomial P N ( { z i } ) has to be a SU (2) spin singlet : � L − P N = i ∂ i P N ( { z i } ) = 0 � � � z i ∂ i − N φ L z P N = P N ( { z i } ) = 0 i 2 � � � L + P N = − z 2 i ∂ i + z i N φ P N ( { z i } ) = 0 i All these properties are automatically ensured by global conformal invariance for single channel correlators : � ( z i − z j ) γ � Φ( z 1 ) . . . Φ( z N ) � i < j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 9 / 33

  25. Conformal field theories as wavefunctions generators To describe a N particles quantum Hall ground state, a polynomial P N ( { z i } ) has to be a SU (2) spin singlet : � L − P N = i ∂ i P N ( { z i } ) = 0 � � � z i ∂ i − N φ L z P N = P N ( { z i } ) = 0 i 2 � � � L + P N = − z 2 i ∂ i + z i N φ P N ( { z i } ) = 0 i All these properties are automatically ensured by global conformal invariance for single channel correlators : � ( z i − z j ) γ � Φ( z 1 ) . . . Φ( z N ) � i < j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 9 / 33

  26. Parafermionic chiral algebra • additional Z k symmetry encoded in the fusion rules of a set of chiral operators Ψ q ( z ) : [ Ψ n ] × [ Ψ m ] = [ Ψ n + m ] consistency (bootstrap) fixes the conformal dimensions : ∆ n = r n ( k − n ) 2 k • r ≥ 2 is an integer : r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)] ⇒ Read-Rezayi states r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)] ⇒ Gaffnian r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)] Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 10 / 33

  27. Parafermionic chiral algebra • additional Z k symmetry encoded in the fusion rules of a set of chiral operators Ψ q ( z ) : [ Ψ n ] × [ Ψ m ] = [ Ψ n + m ] consistency (bootstrap) fixes the conformal dimensions : ∆ n = r n ( k − n ) 2 k • r ≥ 2 is an integer : r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)] ⇒ Read-Rezayi states r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)] ⇒ Gaffnian r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)] Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 10 / 33

  28. Parafermionic chiral algebra • additional Z k symmetry encoded in the fusion rules of a set of chiral operators Ψ q ( z ) : [ Ψ n ] × [ Ψ m ] = [ Ψ n + m ] consistency (bootstrap) fixes the conformal dimensions : ∆ n = r n ( k − n ) 2 k • r ≥ 2 is an integer : r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)] ⇒ Read-Rezayi states r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)] ⇒ Gaffnian r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)] Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 10 / 33

  29. Parafermionic chiral algebra • additional Z k symmetry encoded in the fusion rules of a set of chiral operators Ψ q ( z ) : [ Ψ n ] × [ Ψ m ] = [ Ψ n + m ] consistency (bootstrap) fixes the conformal dimensions : ∆ n = r n ( k − n ) 2 k • r ≥ 2 is an integer : r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)] ⇒ Read-Rezayi states r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)] ⇒ Gaffnian r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)] Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 10 / 33

  30. Parafermionic chiral algebra • additional Z k symmetry encoded in the fusion rules of a set of chiral operators Ψ q ( z ) : [ Ψ n ] × [ Ψ m ] = [ Ψ n + m ] consistency (bootstrap) fixes the conformal dimensions : ∆ n = r n ( k − n ) 2 k • r ≥ 2 is an integer : r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)] ⇒ Read-Rezayi states r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)] ⇒ Gaffnian r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)] Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 10 / 33

  31. Parafermionic chiral algebra • additional Z k symmetry encoded in the fusion rules of a set of chiral operators Ψ q ( z ) : [ Ψ n ] × [ Ψ m ] = [ Ψ n + m ] consistency (bootstrap) fixes the conformal dimensions : ∆ n = r n ( k − n ) 2 k • r ≥ 2 is an integer : r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)] ⇒ Read-Rezayi states r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)] ⇒ Gaffnian r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)] Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 10 / 33

  32. Parafermionic chiral algebra • additional Z k symmetry encoded in the fusion rules of a set of chiral operators Ψ q ( z ) : [ Ψ n ] × [ Ψ m ] = [ Ψ n + m ] consistency (bootstrap) fixes the conformal dimensions : ∆ n = r n ( k − n ) 2 k • r ≥ 2 is an integer : r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)] ⇒ Read-Rezayi states r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)] ⇒ Gaffnian r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)] Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 10 / 33

  33. Parafermionic chiral algebra • additional Z k symmetry encoded in the fusion rules of a set of chiral operators Ψ q ( z ) : [ Ψ n ] × [ Ψ m ] = [ Ψ n + m ] consistency (bootstrap) fixes the conformal dimensions : ∆ n = r n ( k − n ) 2 k • r ≥ 2 is an integer : r = 2 : FZ parafermions [Fateev, Zamolodchikov (1985)] ⇒ Read-Rezayi states r = 3 : (for k even) non unitary [Jacob, Mathieu (2002)] ⇒ Gaffnian r = 4 : second parafermionic serie [Dotsenko, Jacobsen, Santachiara (2003)] Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 10 / 33

  34. Parafermionic correlators and clustering properties Parafermionic correlators Let’s consider a parafermionic CFT Z ( r ) k . The following function is a symmetric polynomial � P ( k , r ) ( z i − z j ) 2∆ 1 − ∆ 2 ( { z i } ) = ˆ � Ψ( z 1 ) . . . Ψ( z N ) � N i < j � ( z i − z j ) r / k . = � Ψ( z 1 ) . . . Ψ( z N ) � i < j and is a SU (2) singlet. Clustering properties More interestingly, this polynomial vanishes as r powers when k + 1 particles come to the same point ! Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 11 / 33

  35. Parafermionic correlators and clustering properties Parafermionic correlators Let’s consider a parafermionic CFT Z ( r ) k . The following function is a symmetric polynomial � P ( k , r ) ( z i − z j ) 2∆ 1 − ∆ 2 ( { z i } ) = ˆ � Ψ( z 1 ) . . . Ψ( z N ) � N i < j � ( z i − z j ) r / k . = � Ψ( z 1 ) . . . Ψ( z N ) � i < j and is a SU (2) singlet. Clustering properties More interestingly, this polynomial vanishes as r powers when k + 1 particles come to the same point ! Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 11 / 33

  36. WA k − 1 conformal field theories : some basic properties Extended conformal symmetry These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W 3 theory generalized to any k by Fateev and Lykyanov (1988) they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T ( z ), the chiral algebra contains k − 2 currents W ( s ) ( z ) of integer spin s = 3 , . . . , k − 1. Minimal models For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the WA k − 1 ( p , p ′ ) models is: � � 1 − k ( k + 1)( p − p ′ ) 2 c ( p , p ′ ) = ( k − 1) pp ′ p and p ′ are coprimes, and these models are unitary for p ′ = p + 1. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 12 / 33

  37. WA k − 1 conformal field theories : some basic properties Extended conformal symmetry These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W 3 theory generalized to any k by Fateev and Lykyanov (1988) they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T ( z ), the chiral algebra contains k − 2 currents W ( s ) ( z ) of integer spin s = 3 , . . . , k − 1. Minimal models For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the WA k − 1 ( p , p ′ ) models is: � � 1 − k ( k + 1)( p − p ′ ) 2 c ( p , p ′ ) = ( k − 1) pp ′ p and p ′ are coprimes, and these models are unitary for p ′ = p + 1. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 12 / 33

  38. WA k − 1 conformal field theories : some basic properties Extended conformal symmetry These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W 3 theory generalized to any k by Fateev and Lykyanov (1988) they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T ( z ), the chiral algebra contains k − 2 currents W ( s ) ( z ) of integer spin s = 3 , . . . , k − 1. Minimal models For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the WA k − 1 ( p , p ′ ) models is: � � 1 − k ( k + 1)( p − p ′ ) 2 c ( p , p ′ ) = ( k − 1) pp ′ p and p ′ are coprimes, and these models are unitary for p ′ = p + 1. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 12 / 33

  39. WA k − 1 conformal field theories : some basic properties Extended conformal symmetry These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W 3 theory generalized to any k by Fateev and Lykyanov (1988) they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T ( z ), the chiral algebra contains k − 2 currents W ( s ) ( z ) of integer spin s = 3 , . . . , k − 1. Minimal models For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the WA k − 1 ( p , p ′ ) models is: � � 1 − k ( k + 1)( p − p ′ ) 2 c ( p , p ′ ) = ( k − 1) pp ′ p and p ′ are coprimes, and these models are unitary for p ′ = p + 1. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 12 / 33

  40. WA k − 1 conformal field theories : some basic properties Extended conformal symmetry These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W 3 theory generalized to any k by Fateev and Lykyanov (1988) they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T ( z ), the chiral algebra contains k − 2 currents W ( s ) ( z ) of integer spin s = 3 , . . . , k − 1. Minimal models For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the WA k − 1 ( p , p ′ ) models is: � � 1 − k ( k + 1)( p − p ′ ) 2 c ( p , p ′ ) = ( k − 1) pp ′ p and p ′ are coprimes, and these models are unitary for p ′ = p + 1. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 12 / 33

  41. WA k − 1 conformal field theories : some basic properties Extended conformal symmetry These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W 3 theory generalized to any k by Fateev and Lykyanov (1988) they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T ( z ), the chiral algebra contains k − 2 currents W ( s ) ( z ) of integer spin s = 3 , . . . , k − 1. Minimal models For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the WA k − 1 ( p , p ′ ) models is: � � 1 − k ( k + 1)( p − p ′ ) 2 c ( p , p ′ ) = ( k − 1) pp ′ p and p ′ are coprimes, and these models are unitary for p ′ = p + 1. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 12 / 33

  42. WA k − 1 conformal field theories : some basic properties Extended conformal symmetry These theories have first been introduced in the case k = 3 by Fateev and Zamolodchikov (1987) : the so-called W 3 theory generalized to any k by Fateev and Lykyanov (1988) they are the prototype of CFT with extended symmetries : in addition to the stress-energy tensor T ( z ), the chiral algebra contains k − 2 currents W ( s ) ( z ) of integer spin s = 3 , . . . , k − 1. Minimal models For a discrete serie of values of the central charge, these CFT are minimal. The central charge of the WA k − 1 ( p , p ′ ) models is: � � 1 − k ( k + 1)( p − p ′ ) 2 c ( p , p ′ ) = ( k − 1) pp ′ p and p ′ are coprimes, and these models are unitary for p ′ = p + 1. Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 12 / 33

  43. WA 1 theories : minimal models of Virasoro algebra Virasoro algebra The conformal symmetry is encoded in a single current : the stress-enery tensor T ( z ). Its mode obey the celebrated Virasoro algebra : [ L n , L m ] = ( n − m ) L n + m + c 12 n ( n 2 − 1) δ n + m , 0 Primary fields Primary fields are anihilated by all positive modes L n : T ( z )Φ ∆ (0) = ∆ z 2 Φ ∆ (0) + 1 z ∂ Φ ∆ (0) + O (1) Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 13 / 33

  44. WA 1 theories : minimal models of Virasoro algebra Virasoro algebra The conformal symmetry is encoded in a single current : the stress-enery tensor T ( z ). Its mode obey the celebrated Virasoro algebra : [ L n , L m ] = ( n − m ) L n + m + c 12 n ( n 2 − 1) δ n + m , 0 Primary fields Primary fields are anihilated by all positive modes L n : T ( z )Φ ∆ (0) = ∆ z 2 Φ ∆ (0) + 1 z ∂ Φ ∆ (0) + O (1) Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 13 / 33

  45. WA 1 theories : minimal models of Virasoro algebra Virasoro algebra The conformal symmetry is encoded in a single current : the stress-enery tensor T ( z ). Its mode obey the celebrated Virasoro algebra : [ L n , L m ] = ( n − m ) L n + m + c 12 n ( n 2 − 1) δ n + m , 0 Primary fields Primary fields are anihilated by all positive modes L n : T ( z )Φ ∆ (0) = ∆ z 2 Φ ∆ (0) + 1 z ∂ Φ ∆ (0) + O (1) Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 13 / 33

  46. WA 1 theories : minimal models of Virasoro algebra Virasoro algebra The conformal symmetry is encoded in a single current : the stress-enery tensor T ( z ). Its mode obey the celebrated Virasoro algebra : [ L n , L m ] = ( n − m ) L n + m + c 12 n ( n 2 − 1) δ n + m , 0 Primary fields Primary fields are anihilated by all positive modes L n : T ( z )Φ ∆ (0) = ∆ z 2 Φ ∆ (0) + 1 z ∂ Φ ∆ (0) + O (1) Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 13 / 33

  47. Minimal models of Virasoro algebra WA 1 ( p , p ′ ) central charge c = 1 − 6( p − p ′ ) 2 pp ′ finite number of primary fields Φ ( n | n ′ ) labeled by the Kac table : 1 ≤ n ≤ p ′ − 1 1 ≤ n ′ ≤ p − 1 with conformal dimension ∆ ( n , n ′ ) = ( np − n ′ p ′ ) 2 − ( p − p ′ ) 2 4 pp ′ Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 14 / 33

  48. Minimal models of Virasoro algebra WA 1 ( p , p ′ ) central charge c = 1 − 6( p − p ′ ) 2 pp ′ finite number of primary fields Φ ( n | n ′ ) labeled by the Kac table : 1 ≤ n ≤ p ′ − 1 1 ≤ n ′ ≤ p − 1 with conformal dimension ∆ ( n , n ′ ) = ( np − n ′ p ′ ) 2 − ( p − p ′ ) 2 4 pp ′ Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 14 / 33

  49. Minimal models of Virasoro algebra WA 1 ( p , p ′ ) central charge c = 1 − 6( p − p ′ ) 2 pp ′ finite number of primary fields Φ ( n | n ′ ) labeled by the Kac table : 1 ≤ n ≤ p ′ − 1 1 ≤ n ′ ≤ p − 1 with conformal dimension ∆ ( n , n ′ ) = ( np − n ′ p ′ ) 2 − ( p − p ′ ) 2 4 pp ′ Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 14 / 33

  50. Minimal models of Virasoro algebra WA 1 ( p , p ′ ) central charge c = 1 − 6( p − p ′ ) 2 pp ′ finite number of primary fields Φ ( n | n ′ ) labeled by the Kac table : 1 ≤ n ≤ p ′ − 1 1 ≤ n ′ ≤ p − 1 with conformal dimension ∆ ( n , n ′ ) = ( np − n ′ p ′ ) 2 − ( p − p ′ ) 2 4 pp ′ Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 14 / 33

  51. WA 1 (3 , 2 + r ) theories and parafermions λ Φ ( n | n ′ +1) Φ (1 | 2) × Φ ( n | n ′ ) Φ ( n | n ′ − 1) Fermionic field Φ (1 | 2) In the theory WA 1 (3 , 2 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ × Ψ = I and its conformal dimension is ∆ (1 | 2) = r 4 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 2 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 15 / 33

  52. WA 1 (3 , 2 + r ) theories and parafermions λ Φ (1 | 3) Φ (1 | 2) × Φ (1 | 2) Φ (1 | 1) Fermionic field Φ (1 | 2) In the theory WA 1 (3 , 2 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ × Ψ = I and its conformal dimension is ∆ (1 | 2) = r 4 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 2 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 15 / 33

  53. WA 1 (3 , 2 + r ) theories and parafermions λ Φ (1 | 3) Φ (1 | 2) × Φ (1 | 2) Φ (1 | 1) Fermionic field Φ (1 | 2) In the theory WA 1 (3 , 2 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ × Ψ = I and its conformal dimension is ∆ (1 | 2) = r 4 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 2 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 15 / 33

  54. WA 1 (3 , 2 + r ) theories and parafermions Φ Φ (1 | 3) Φ (1 | 2) × Φ (1 | 2) Ψ × Ψ = I Φ (1 | 1) Fermionic field Φ (1 | 2) In the theory WA 1 (3 , 2 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ × Ψ = I and its conformal dimension is ∆ (1 | 2) = r 4 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 2 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 15 / 33

  55. WA 1 (3 , 2 + r ) theories and parafermions Φ Φ (1 | 3) Φ (1 | 2) × Φ (1 | 2) Ψ × Ψ = I Φ (1 | 1) Fermionic field Φ (1 | 2) In the theory WA 1 (3 , 2 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ × Ψ = I and its conformal dimension is ∆ (1 | 2) = r 4 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 2 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 15 / 33

  56. WA 1 (3 , 2 + r ) theories and parafermions Φ Φ (1 | 3) Φ (1 | 2) × Φ (1 | 2) Ψ × Ψ = I Φ (1 | 1) Fermionic field Φ (1 | 2) In the theory WA 1 (3 , 2 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ × Ψ = I and its conformal dimension is ∆ (1 | 2) = r 4 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 2 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 15 / 33

  57. WA 1 (3 , 2 + r ) theories and parafermions Φ Φ (1 | 3) Φ (1 | 2) × Φ (1 | 2) Ψ × Ψ = I Φ (1 | 1) Fermionic field Φ (1 | 2) In the theory WA 1 (3 , 2 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ × Ψ = I and its conformal dimension is ∆ (1 | 2) = r 4 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 2 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 15 / 33

  58. WA 1 (3 , 2 + r ) theories and parafermions Φ Φ (1 | 3) Φ (1 | 2) × Φ (1 | 2) Ψ × Ψ = I Φ (1 | 1) Fermionic field Φ (1 | 2) In the theory WA 1 (3 , 2 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ × Ψ = I and its conformal dimension is ∆ (1 | 2) = r 4 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 2 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 15 / 33

  59. Null vector at level 2 for the field Ψ = Φ (1 | 2) The following field � � 3 r + 2 L 2 χ 2 = L − 2 − Ψ − 1 This degeneracy translates into a PDE for correlators: ∂ 2 � Ψ( z )Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � = r + 2 � L − 2 Ψ( z )Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � 3 Virasoro modes have a geometric interpretation � ˆ � ( L − 2 Φ( z ))Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � = D j � Φ( z )Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � j where D j are differential operators acting on the j th field: 1 1 ˆ D j = ( z − w j ) 2 ∆ j + ( z − w j ) ∂ w j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 16 / 33

  60. Null vector at level 2 for the field Ψ = Φ (1 | 2) The following field � � 3 r + 2 L 2 χ 2 = L − 2 − Ψ − 1 This degeneracy translates into a PDE for correlators: ∂ 2 � Ψ( z )Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � = r + 2 � L − 2 Ψ( z )Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � 3 Virasoro modes have a geometric interpretation � ˆ � ( L − 2 Φ( z ))Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � = D j � Φ( z )Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � j where D j are differential operators acting on the j th field: 1 1 ˆ D j = ( z − w j ) 2 ∆ j + ( z − w j ) ∂ w j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 16 / 33

  61. Null vector at level 2 for the field Ψ = Φ (1 | 2) The following field � � 3 r + 2 L 2 χ 2 = L − 2 − Ψ − 1 This degeneracy translates into a PDE for correlators: ∂ 2 � Ψ( z )Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � = r + 2 � L − 2 Ψ( z )Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � 3 Virasoro modes have a geometric interpretation � ˆ � ( L − 2 Φ( z ))Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � = D j � Φ( z )Φ 1 ( w 1 )Φ 2 ( w 2 ) · · · � j where D j are differential operators acting on the j th field: 1 1 ˆ D j = ( z − w j ) 2 ∆ j + ( z − w j ) ∂ w j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 16 / 33

  62. WA 1 (3 , 2 + r ) theories and PDE Null vector at level 2 N N i � Ψ( z 1 )Ψ( z 2 ) · · · Ψ( z N ) � = r + 2 � � i L ( i ) z 2 i ∂ 2 z 2 − 2 � Ψ( z 1 )Ψ( z 2 ) · · · Ψ( z N ) � 3 i =1 i =1 translates into the following PDE : H WA 1 ( r ) � Ψ( z 1 )Ψ( z 2 ) · · · Ψ( z N ) � = 0 H WA 1 is a differential operator of order 2: z 2 z i z j ( ∂ j − ∂ i ) � � � ( z i ∂ i ) 2 + γ 1 ( r ) j ( z j − z i ) 2 + γ 2 ( r ) + N γ 3 ( r ) ( z j − z i ) i i � = j i � = j γ 1 = − r ( r + 2) γ 2 = r + 2 γ 3 = − r ( r − 1) , et 12 6 12 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 17 / 33

  63. WA 1 (3 , 2 + r ) theories and PDE Null vector at level 2 N N i � Ψ( z 1 )Ψ( z 2 ) · · · Ψ( z N ) � = r + 2 � � i L ( i ) z 2 i ∂ 2 z 2 − 2 � Ψ( z 1 )Ψ( z 2 ) · · · Ψ( z N ) � 3 i =1 i =1 translates into the following PDE : H WA 1 ( r ) � Ψ( z 1 )Ψ( z 2 ) · · · Ψ( z N ) � = 0 H WA 1 is a differential operator of order 2: z 2 z i z j ( ∂ j − ∂ i ) � � � ( z i ∂ i ) 2 + γ 1 ( r ) j ( z j − z i ) 2 + γ 2 ( r ) + N γ 3 ( r ) ( z j − z i ) i i � = j i � = j γ 1 = − r ( r + 2) γ 2 = r + 2 γ 3 = − r ( r − 1) , et 12 6 12 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 17 / 33

  64. WA 1 (3 , 2 + r ) theories and PDE Null vector at level 2 N N i � Ψ( z 1 )Ψ( z 2 ) · · · Ψ( z N ) � = r + 2 � � i L ( i ) z 2 i ∂ 2 z 2 − 2 � Ψ( z 1 )Ψ( z 2 ) · · · Ψ( z N ) � 3 i =1 i =1 translates into the following PDE : H WA 1 ( r ) � Ψ( z 1 )Ψ( z 2 ) · · · Ψ( z N ) � = 0 H WA 1 is a differential operator of order 2: z 2 z i z j ( ∂ j − ∂ i ) � � � ( z i ∂ i ) 2 + γ 1 ( r ) j ( z j − z i ) 2 + γ 2 ( r ) + N γ 3 ( r ) ( z j − z i ) i i � = j i � = j γ 1 = − r ( r + 2) γ 2 = r + 2 γ 3 = − r ( r − 1) , et 12 6 12 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 17 / 33

  65. WA 1 (3 , 2 + r ) theories and Jacks [Cardy (2004)] Jack polynomial By restauring the charge part, we consider the following polynomial wavefunction : � ( z i − z j ) r / 2 . P N ˆ = � Ψ( z 1 ) . . . Ψ( z N ) � i < j ⇒ It is an eigenvalue of the Calogero-Sutherland Hamiltonian for α = − 2+1 r − 1 , corresponding to the densest (2 , r ) admissible partition ! This proves the following relation : � ( z i − z j ) r / 2 . = J − 3 / ( r − 1) � Ψ( z 1 ) . . . Ψ( z N ) � [20 r − 1 20 r − 1 ··· 2] i < j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 18 / 33

  66. WA 1 (3 , 2 + r ) theories and Jacks [Cardy (2004)] Jack polynomial By restauring the charge part, we consider the following polynomial wavefunction : � ( z i − z j ) r / 2 . P N ˆ = � Ψ( z 1 ) . . . Ψ( z N ) � i < j ⇒ It is an eigenvalue of the Calogero-Sutherland Hamiltonian for α = − 2+1 r − 1 , corresponding to the densest (2 , r ) admissible partition ! This proves the following relation : � ( z i − z j ) r / 2 . = J − 3 / ( r − 1) � Ψ( z 1 ) . . . Ψ( z N ) � [20 r − 1 20 r − 1 ··· 2] i < j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 18 / 33

  67. WA 1 (3 , 2 + r ) theories and Jacks [Cardy (2004)] Jack polynomial By restauring the charge part, we consider the following polynomial wavefunction : � ( z i − z j ) r / 2 . P N ˆ = � Ψ( z 1 ) . . . Ψ( z N ) � i < j ⇒ It is an eigenvalue of the Calogero-Sutherland Hamiltonian for α = − 2+1 r − 1 , corresponding to the densest (2 , r ) admissible partition ! This proves the following relation : � ( z i − z j ) r / 2 . = J − 3 / ( r − 1) � Ψ( z 1 ) . . . Ψ( z N ) � [20 r − 1 20 r − 1 ··· 2] i < j Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 18 / 33

  68. WA 2 algebra The algebra is generated by two currents T ( z ) and W ( z ) : ( n − m ) L n + m + c 12 n ( n 2 − 1) δ n + m , 0 [ L n , L m ] = [ L n , W m ] = (2 n − m ) W n + m 16 c 360 n ( n 2 − 1)( n 2 − 4) δ n + m , 0 [ W n , W m ] = 22 + 5 c ( n − m )Λ n + m + � ( n + m + 2)( n + m + 3) � − ( n + 2)( m + 2) + ( n − m ) L n + m 15 6 Primary fields Φ ∆ ,ω ∆Φ(0) + ∂ Φ(0) T ( z )Φ ∆ ,ω (0) = + . . . z 2 z ω Φ(0) + W − 1 Φ(0) + W − 2 Φ(0) W ( z )Φ ∆ ,ω (0) = + . . . z 3 z 2 z Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 19 / 33

  69. WA 2 algebra The algebra is generated by two currents T ( z ) and W ( z ) : ( n − m ) L n + m + c 12 n ( n 2 − 1) δ n + m , 0 [ L n , L m ] = [ L n , W m ] = (2 n − m ) W n + m 16 c 360 n ( n 2 − 1)( n 2 − 4) δ n + m , 0 [ W n , W m ] = 22 + 5 c ( n − m )Λ n + m + � ( n + m + 2)( n + m + 3) � − ( n + 2)( m + 2) + ( n − m ) L n + m 15 6 Primary fields Φ ∆ ,ω ∆Φ(0) + ∂ Φ(0) T ( z )Φ ∆ ,ω (0) = + . . . z 2 z ω Φ(0) + W − 1 Φ(0) + W − 2 Φ(0) W ( z )Φ ∆ ,ω (0) = + . . . z 3 z 2 z Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 19 / 33

  70. WA 2 algebra The algebra is generated by two currents T ( z ) and W ( z ) : ( n − m ) L n + m + c 12 n ( n 2 − 1) δ n + m , 0 [ L n , L m ] = [ L n , W m ] = (2 n − m ) W n + m 16 c 360 n ( n 2 − 1)( n 2 − 4) δ n + m , 0 [ W n , W m ] = 22 + 5 c ( n − m )Λ n + m + � ( n + m + 2)( n + m + 3) � − ( n + 2)( m + 2) + ( n − m ) L n + m 15 6 Primary fields Φ ∆ ,ω ∆Φ(0) + ∂ Φ(0) T ( z )Φ ∆ ,ω (0) = + . . . z 2 z ω Φ(0) + W − 1 Φ(0) + W − 2 Φ(0) W ( z )Φ ∆ ,ω (0) = + . . . z 3 z 2 z Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 19 / 33

  71. WA 2 ( p , p ′ ) minimal models central charge � � 1 − 12( p − p ′ ) 2 c = 2 pp ′ finite number of primary fields Φ ( n 1 , n 2 | n ′ 2 ) labeled by the Kac table : 1 , n ′ n 1 + n 2 ≤ p ′ − 1 n ′ 1 + n ′ 2 ≤ p − 1 with conformal dimension n ′ p ′ ) 2 − � ρ 2 ( p − p ′ ) 2 2 ) = ( � np − � ∆ ( n 1 , n 2 | n ′ 1 , n ′ 2 pp ′ Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 20 / 33

  72. WA 2 ( p , p ′ ) minimal models central charge � � 1 − 12( p − p ′ ) 2 c = 2 pp ′ finite number of primary fields Φ ( n 1 , n 2 | n ′ 2 ) labeled by the Kac table : 1 , n ′ n 1 + n 2 ≤ p ′ − 1 n ′ 1 + n ′ 2 ≤ p − 1 with conformal dimension n ′ p ′ ) 2 − � ρ 2 ( p − p ′ ) 2 2 ) = ( � np − � ∆ ( n 1 , n 2 | n ′ 1 , n ′ 2 pp ′ Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 20 / 33

  73. WA 2 ( p , p ′ ) minimal models central charge � � 1 − 12( p − p ′ ) 2 c = 2 pp ′ finite number of primary fields Φ ( n 1 , n 2 | n ′ 2 ) labeled by the Kac table : 1 , n ′ n 1 + n 2 ≤ p ′ − 1 n ′ 1 + n ′ 2 ≤ p − 1 with conformal dimension n ′ p ′ ) 2 − � ρ 2 ( p − p ′ ) 2 2 ) = ( � np − � ∆ ( n 1 , n 2 | n ′ 1 , n ′ 2 pp ′ Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 20 / 33

  74. WA 2 ( p , p ′ ) minimal models central charge � � 1 − 12( p − p ′ ) 2 c = 2 pp ′ finite number of primary fields Φ ( n 1 , n 2 | n ′ 2 ) labeled by the Kac table : 1 , n ′ n 1 + n 2 ≤ p ′ − 1 n ′ 1 + n ′ 2 ≤ p − 1 with conformal dimension n ′ p ′ ) 2 − � ρ 2 ( p − p ′ ) 2 2 ) = ( � np − � ∆ ( n 1 , n 2 | n ′ 1 , n ′ 2 pp ′ Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 20 / 33

  75. WA 2 (4 , 3 + r ) CFT : parafermionic Z ( r ) theories 3 λ Φ ( n 1 ,n 2 | n ′ 1 +1 ,n ′ 2 ) Φ (11 | 21) × Φ ( n 1 ,n 2 | n ′ Φ ( n 1 ,n 2 | n ′ 1 ,n ′ 1 − 1 ,n ′ 2 ) 2 +1) Φ ( n 1 ,n 2 | n ′ 1 ,n ′ 2 − 1) Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 21 / 33

  76. WA 2 (4 , 3 + r ) CFT : parafermionic Z ( r ) theories 3 Φ (1 , 1 | 3 , 1) Φ (1 , 1 | 2 , 1) × Φ (1 , 1 | 2 , 1) Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 2 , 0) Φ (1 , 1 | 2 , 2) Φ (1 , 1 | 2 , 1) × Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 0 , 3) Φ (1 , 1 | 1 , 1) Φ (1 , 1 | 1 , 3) Φ (1 , 1 | 1 , 2) × Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 2 , 1) Φ (1 , 1 | 0 , 2) Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 21 / 33

  77. WA 2 (4 , 3 + r ) CFT : parafermionic Z ( r ) theories 3 Φ (1 , 1 | 3 , 1) Φ (1 , 1 | 2 , 1) × Φ (1 , 1 | 2 , 1) Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 2 , 0) Φ (1 , 1 | 2 , 2) Φ (1 , 1 | 2 , 1) × Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 0 , 3) Φ (1 , 1 | 1 , 1) Φ (1 , 1 | 1 , 3) Φ (1 , 1 | 1 , 2) × Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 2 , 1) Φ (1 , 1 | 0 , 2) Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 21 / 33

  78. WA 2 (4 , 3 + r ) CFT : parafermionic Z ( r ) theories 3 Φ (1 , 1 | 3 , 1) Φ (1 , 1 | 2 , 1) × Φ (1 , 1 | 2 , 1) Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 2 , 0) Φ (1 , 1 | 2 , 2) Φ (1 , 1 | 2 , 1) × Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 0 , 3) Φ (1 , 1 | 1 , 1) Φ (1 , 1 | 1 , 3) Φ (1 , 1 | 1 , 2) × Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 2 , 1) Φ (1 , 1 | 0 , 2) Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 21 / 33

  79. WA 2 (4 , 3 + r ) CFT : parafermionic Z ( r ) theories 3 Φ (1 , 1 | 3 , 1) Ψ × Ψ = Ψ † Φ (1 , 1 | 2 , 1) × Φ (1 , 1 | 2 , 1) Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 2 , 0) Φ (1 , 1 | 2 , 2) Ψ × Ψ † = I Φ (1 , 1 | 2 , 1) × Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 0 , 3) Φ (1 , 1 | 1 , 1) Φ (1 , 1 | 1 , 3) Ψ † × Ψ † = Ψ Φ (1 , 1 | 1 , 2) × Φ (1 , 1 | 1 , 2) Φ (1 , 1 | 2 , 1) Φ (1 , 1 | 0 , 2) Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 21 / 33

  80. WA 2 (4 , 3 + r ) CFT : parafermionic Z ( r ) theories 3 Parafermionic fields Ψ = Φ (1 , 1 | 2 , 1) and Ψ † = Φ (1 , 1 | 1 , 2) In the theory WA 2 (4 , 3 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ † Ψ × Ψ = Ψ × Ψ † = I Ψ † × Ψ † = Ψ and their conformal dimension is ∆ (1 , 1 | 2 , 1) = ∆ (1 , 1 | 1 , 2) = r 3 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 3 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 22 / 33

  81. WA 2 (4 , 3 + r ) CFT : parafermionic Z ( r ) theories 3 Parafermionic fields Ψ = Φ (1 , 1 | 2 , 1) and Ψ † = Φ (1 , 1 | 1 , 2) In the theory WA 2 (4 , 3 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ † Ψ × Ψ = Ψ × Ψ † = I Ψ † × Ψ † = Ψ and their conformal dimension is ∆ (1 , 1 | 2 , 1) = ∆ (1 , 1 | 1 , 2) = r 3 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 3 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 22 / 33

  82. WA 2 (4 , 3 + r ) CFT : parafermionic Z ( r ) theories 3 Parafermionic fields Ψ = Φ (1 , 1 | 2 , 1) and Ψ † = Φ (1 , 1 | 1 , 2) In the theory WA 2 (4 , 3 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ † Ψ × Ψ = Ψ × Ψ † = I Ψ † × Ψ † = Ψ and their conformal dimension is ∆ (1 , 1 | 2 , 1) = ∆ (1 , 1 | 1 , 2) = r 3 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 3 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 22 / 33

  83. WA 2 (4 , 3 + r ) CFT : parafermionic Z ( r ) theories 3 Parafermionic fields Ψ = Φ (1 , 1 | 2 , 1) and Ψ † = Φ (1 , 1 | 1 , 2) In the theory WA 2 (4 , 3 + r ) the field Ψ = Φ (1 | 2) obey the fusion rules : Ψ † Ψ × Ψ = Ψ × Ψ † = I Ψ † × Ψ † = Ψ and their conformal dimension is ∆ (1 , 1 | 2 , 1) = ∆ (1 , 1 | 1 , 2) = r 3 ⇒ This is a particular realization of a Z ( r ) parafermionic field theory 3 Benoit Estienne (LPTHE) Jack wavefunctions and W theories 08/20/2009 22 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend