vo vorticity and spin polarization in hea in heavy io ion
play

Vo Vorticity and spin polarization in hea in heavy-io ion c n - PowerPoint PPT Presentation

Vo Vorticity and spin polarization in hea in heavy-io ion c n collis llisio ions ns Xu-Guang Huang Fudan University, Shanghai September 15th , 2020 @ Webnar given at Sharif University of Technology, Tehran, Iran Motivation of the talk


  1. Vo Vorticity and spin polarization in hea in heavy-io ion c n collis llisio ions ns Xu-Guang Huang Fudan University, Shanghai September 15th , 2020 @ Webnar given at Sharif University of Technology, Tehran, Iran

  2. Motivation of the talk Quark-gluon plasma: “The most vortical fluid” Experiment = Theory

  3. Motivation of the talk • But: discrepancies exist between theory and experiments 1) longitudinal polarization vs 𝜚 2) Transverse polarization vs 𝜚 Vs 2018 2018 3) Vector meson spin alignment Too big than expected! Sign is not understood! QM2019

  4. Outline • Vorticity in heavy-ion collisions (HICs) • From vorticity to spin polarization of hadrons • Spin hydrodynamics • Spin alignment and spin dependent hadron yields • Summary

  5. Vorticity in heavy-ion collisions 5

  6. What is vorticity? 𝝏 = 𝟐 𝟑 𝛂×𝒘 Fluid vorticity Vortex in a coffee cup (Angular velocity of fluid cell)

  7. What is vorticity? • Vortices: common phenomena in fluids across a very broad hierarchy of scales 𝟐𝟏 𝟑 − 𝟐𝟏 #𝟑 𝒏 𝟐𝟏 #𝟔 − 𝟐𝟏 #𝟗 𝒏 𝟐𝟏 𝟑𝟐 𝒏 𝟐𝟏 #𝟐𝟔 𝒏 Rotating galaxies Superfluid helium Quark gluon matter Tornados, ocean vortices, …

  8. Why fluid vorticity in HICs? ⨀ y 𝑸 𝒜 ~ 𝑩 𝒕 𝟑 𝑲 𝟏 ~ 𝑩𝒄 𝒕 𝒄 𝟑 ~𝟐𝟏 𝟐𝟗 G 𝒂 𝒇𝑪~𝜹𝜷 '( ~𝟐𝟏 𝟕 ℏ 𝟑 Global angular momentum Strong Magnetic field (RHIC Au+Au 200 GeV, b=10 fm)

  9. Why fluid vorticity in HICs? ⨀ y 𝑸 𝒜 ~ 𝑩 𝒕 𝟑 Local vorticity 𝑲 𝟏 ~ 𝑩𝒄 𝒕 ~𝟐𝟏 𝟕 ℏ 𝟑 𝝏~ ? Global angular momentum (RHIC Au+Au 200 GeV, b=10 fm)

  10. Vorticity by global angular momentum Energy dependence of initial vorticity Time dependence AMPT (Jiang-Lin-Liao 2016) (Deng-XGH 2016; Deng-XGH-Ma-Zhang 2020) The most vortical fluid: Au+Au@RHIC at 𝒄 =10 fm is 𝟐𝟏 𝟑𝟏 − 𝟐𝟏 𝟑𝟐 𝒕 $𝟐 (See also: Becattini-Karpenko etal 2015,2016; Xie-Csernai etal 2014,2016,2019; Pang- Petersen-Wang-Wang 2016; Xia-Li-Wang 2017,2018; Sun- Ko 2017; Wei-Deng-XGH 2018; … …)

  11. Vorticity by fireball expansion Transverse (Xia-Li-Wang 2017) (Wei-Deng-XGH 2018) (See also: Karpenko- Thermal Longitudinal Becattini 2017; Csernai vorticity etal 2014; Teryaev- Usubov 2015; Ivanov- Soldatov 2018; … …) 11

  12. Other sources of vorticity 1) Jet (Pang-Peterson-Wang-Wang 2016) 2) Magnetic field Einstein-de-Haas effect

  13. Main message: 1. Global AM induces strong vorticity in HICs : 𝝏 ≈ 𝟐𝟏 𝟑𝟐 − 𝟐𝟏 𝟑𝟑 𝒕 #𝟐 2. Fireball expansion: quadrupoles in both xy and xz planes How to detect it experimentally? Spin polarization, Chiral vortical effects, … …

  14. Spin polarization by vorticity 14

  15. How vorticity polarizes spin? Early idea: Liang-Wang PRL2005; Voloshin 2004 Vorticity interpretation (at thermal equilibrium) 𝑒𝑂 𝑒𝒒 ~𝑓 "($ " "𝝏&𝑻)/* 𝐼 = 𝐼 ! − 𝝏 % 𝑻 P = 𝑂 ↑ − 𝑂 ↓ ~ 𝜕 𝑂 ↑ + 𝑂 ↓ 2𝑈 More rigorous derivation (Becattini etal 2013; Fang etal 2016; Liu-Mameda-XGH 2020) ∫ 𝑒Σ , 𝑞 , 𝑔 - (𝑦, 𝑞)𝜜 *+ (𝑦) 𝑄 ( 𝑞 = 1 4𝑛 𝜗 ()*+ 𝑞 ) + 𝑃(𝜜 . ) ∫ 𝑒Σ , 𝑞 , 𝑔(𝑦, 𝑞) • Valid at global equilibrium. 𝑔(𝑦, 𝑞) is the distribution function (Fermi-Dirac) / • Thermal vorticity 𝜜 *+ = 𝜖 + 𝛾 * − 𝜖 * 𝛾 + . 15 • Spin polarization is enslaved to thermal vorticity, not dynamical • Friendly for numerical simulation (a spin Cooper-Frye type formula)

  16. Global Λ spin polarization The global polarization (i.e., integrated polarization over kinematics): Experiment = Theory Sun-Ko PRC2017; Wei-Deng-XGH PRC2019; Xie-Wang- Csernai PRC2017; Karpenko-Becattini EPJC2016 MUSIC hydro (Many similar results in literature) Vorticity interpretation of global Λ Fu-Xu-XGH-Song, polarization works well! to appear 16

  17. Global Λ spin polarization The global polarization (i.e., integrated polarization over kinematics): Experiment = Theory Sun-Ko PRC2017; Wei-Deng-XGH PRC2019; Xie-Wang- Csernai PRC2017; Karpenko-Becattini EPJC2016 Though with big error bar, a difference (Many similar results in literature) ! ( ̅ between 𝑄 ! (𝛭) and 𝑄 𝛭) is seen. Vorticity interpretation of global Λ Magnetic field? polarization works well! 𝐼 = 𝐼 I − 𝝏 2 𝑻 − 𝒏 2 𝑪 17

  18. Global Λ spin polarization The global polarization: Experiment = Theory (Deng-XGH 2016; Deng-XGH-Ma-Zhang 2020) vs Need to study polarization at very low 𝒕 : NICA, FAIR, HIAF, BES II@RHIC? HADES 2019

  19. Differential Λ spin polarization The global Λ polarization reflects the total amount of angular momentum retained in the (-1,1) rapidity region. How is it distributed in e.g. 𝑞 0 , 𝜃 , and 𝜚 ? MUSIC hydro MUSIC hydro with AMPT IC with AMPT IC Fu-Xu-XGH-Song, to appear Initial vorticity by HIJING Final polarization by hydro Would be interesting to look at very large rapidity? Wu etal PRR2019 Deng-XGH PRC2016

  20. Differential Λ spin polarization The global Λ polarization reflects the total amount of angular momentum retained in the (-1,1) rapidity region. How is it distributed in e.g. 𝑞 0 , 𝜃 , and 𝜚 ? 𝒆𝑸 𝒛,𝒜 𝒆𝝔 ∝ 𝑸 𝒛,𝒜 + 𝟑𝒈 𝟑𝒛,𝒜 𝐭𝐣𝐨 𝟑𝝔 + 𝟑𝒉 𝟑𝒛,𝒜 𝐝𝐩𝐭 𝟑𝝔 + ⋯ • Spin harmonic flow: 1) longitudinal polarization vs 𝜚 2) Transverse polarization vs 𝜚 (Wei-Deng-XGH PRC2019) (Becattini-Karpenko PRL2018) Vs STAR2018 STAR2018 𝐟𝐲𝐪 > 𝟏 𝐮𝐢𝐟𝐬 < 𝟏 𝐟𝐲𝐪 > 𝟏 𝐮𝐢𝐟𝐬 < 𝟏, 𝒉 𝟑𝒛 𝒈 𝟑𝒜 𝒈 𝟑𝒜 𝒉 𝟑𝒛 We have a spin “sign problem”! 20

  21. Differential Λ spin polarization Attack the puzzles from theory side: Understand the vorticity ( J ) • Effect of feed-down decays (Xia-Li-XGH-Huang PRC2019, Becattini-Cao-Speranza EPJC2019) • (Measured Λ may from decays of heavier particles) Go beyond equilibrium treatment (spin as a dynamic d.o.f) • spin hydrodynamics spin kinetic theory Initial condition • (Initial polarization, initial flow, … …) Other possibilities • (chiral vortical effect (Liu-Sun-Ko 2019) , mesonic mean-field (Csernai-Kapusta-Welle PRC2019) , other spin chemical potential (Wu-Pang-XGH-Wang PRR2019, Florkowski etal2019) , contribution from gluons, … …) Other observables for vorticity and spin polarization • Vector meson spin alignment (Liang-Wang 2005; STAR and ALICE) Vorticity dependent hadron yield (ExHIC-P Collaboration 2002.10082)

  22. Feed-down effect 22

  23. One important contribution • About 80% of Λ’s are from decays of higher-lying particles Thermal model calculation • Some decay channels can flip the spin, e.g., EM decay: • The angular momentum conservation, requires that if Σ is polarization along the vorticity, its daughter Λ must be polarized opposite to the vorticity • Let us examine the decay contribution 23

  24. Spin transfer • Consider the decay process • The parent P is spin-polarized along z, the daughter D moves along p* in P’s rest frame Density matrix The spin polarization of D: 24

  25. Spin transfer • For example, consider the EM decay 1/2 ! → 1/2 ! 1 " : Initial density matrix: First derived by Gatto 1958 25

  26. The feed-down correction (Xia-Li-XGH-Huang PRC2019) Too long to be shown; see ref. Longitudinal polarization • (Xia-Li-XGH-Huang PRC2019) (Becattini-Cao-Speranza EPJC2019) Transverse polarization • Conclusion: Feed-down effects suppress ~ 10% Λ • primordial spin polarization Do not solve the spin sign problem •

  27. Spin hydrodynamics 27

  28. Spin hydrodynamics Framework for collective spin dynamics. Spin as a (quasi-)hydrodynamic variable • Widely used in non-relativistic spintronics, micropolar fluid, … … (Takahashi etal Nat.Phy.2016) • Relativistic ideal spin hydrodynamics (Florkowski etal PRC2018) 28 (See also: Florkowski etal PRD2018,PPNP2019; Motenegro etal PRD2017, PRD2017)

  29. Spin hydrodynamics Relativistic dissipative spin hydrodynamics (Hattori-Hongo-XGH-Matsuo-Taya PLB2019) • Identify (quasi-)hydrodynamic variables: T and 𝒗 𝝂 (4 for translation), 𝝏 𝝂𝝃 = −𝝏 𝝃𝝂 (spin chemical potential, 3 for rotation, 3 for boost). • Derivative expansion. Apply 2 nd law of thermodynamics. • Constitutive relations up to 𝑷(𝝐) 𝝂𝝃 = 𝒇𝒗 𝝂 𝒗 𝝃 + 𝒒(𝒉 𝝂𝝃 + 𝒗 𝝂 𝒗 𝝃 ) 𝑼 (𝟏) shear viscosity heat current bulk viscosity 𝝂𝝃 = −𝟑𝝀 𝑬𝒗 (𝝂 + 𝜸𝝐 ( (𝝂 𝜸 )𝟐 𝒗 𝝃) − 𝟑𝜽𝝐 ( *𝝂 𝒗 𝝃+ − 𝜼 𝝐 𝝂 𝒗 𝝂 𝚬 𝝂𝝃 𝑼 (𝟐) −𝟑𝝁 −𝑬𝒗 [𝝂 + 𝜸𝝐 ( [𝝂 𝜸 )𝟐 + 𝟓𝒗 𝝇 𝝏 𝝇[𝝂 𝒗 𝝃] − 𝟑𝜹 𝝐 ( [𝝂 𝒗 𝝃] − 𝟑𝜠 𝝇 𝝂 𝜠 𝝁 𝝃 𝝏 𝝇𝝁 boost heat current rotational viscosity • Hydrodynamic equations 𝝂𝝃 + 𝑼 𝟐 𝝂𝝃 + 𝑷 𝝐 𝟑 𝜸𝜷 − 𝑼 (𝟐) 𝜷𝜸 + 𝑷(𝝐 𝟑 ) 𝒒 = 𝒒(𝒇, 𝒕 𝜷𝜸 ) 𝝐 𝝂 (𝒗 𝝂 𝒕 𝜷𝜸 ) = 𝑼 𝟐 𝝐 𝝂 𝑼 𝟏 = 𝟏 Energy-momentum conservation Equation of state Angular momentum conservation • Israel-Stewart type theory (See also: Florkowski etal 2020; Shi-Gale-Jeon 2020)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend