vision and color perception
play

Vision and Color Perception Lecture 5 January 28, 2020 Slides - PowerPoint PPT Presentation

CS530 - Spring 2020 Introduction to Scientific Visualization Vision and Color Perception Lecture 5 January 28, 2020 Slides acknowledgment: P. Rheingans (UMBC) and A. Lex (Utah) Outline Preamble: human vision Physiological basis of


  1. CS530 - Spring 2020 Introduction to Scientific Visualization Vision and Color Perception Lecture 5 January 28, 2020 Slides acknowledgment: P. Rheingans (UMBC) and A. Lex (Utah)

  2. Outline • Preamble: human vision • Physiological basis of color perception • Color vision models • Color spaces 2 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  3. Functions of Human Vision • Shape/size • Depth • Motion • Recognition 3 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  4. Properties of Vision • Accurate relative to other senses • Location, size, and identification at a distance • But… 4 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  5. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 5

  6. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 6

  7. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 7

  8. Perceived Sizes Are Relative CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 8

  9. Perceived Sizes Are Relative CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 9

  10. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 10

  11. Ames Room 11 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  12. Ponzo Illusion CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 12

  13. Ponzo Illusion CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 13

  14. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 14

  15. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 15

  16. �������� Properties of Vision • Limitations • V eridical perception is limited • Absolute judgments are often poor • Lack of quantification CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 16

  17. Properties of Vision • Good at • Relative judgments • Time and space • Identification 17 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  18. Light • Visible range: 390-700nm • Luminance has a large dynamic range • Colors result from spectral curves • dominant wavelength, hue • brightness , lightness • purity, saturation 18 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  19. ������������������ � Light • Visible range: 390-700nm • Luminance has a large dynamic range • Colors result from spectral curves • dominant wavelength, hue • brightness , lightness • purity, saturation 18 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  20. Light • Visible range: 390-700nm • 0.00003 -- Moonless overcast night sky • Luminance has a large dynamic range • 30 -- Sky on overcast day • 3000 -- Sky on clear day • Colors result from spectral curves • 16,000 -- Snowy ground in full sunlight • dominant wavelength, hue • brightness , lightness • purity, saturation 18 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  21. Light • Visible range: 390-700nm • Luminance has a large dynamic range • Colors result from spectral curves • dominant wavelength, hue • brightness , lightness • purity, saturation 18 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  22. Spectral Curve (of incoming radiation) Magnitude/Intensity Visible Wavelength (1/frequency) CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 19

  23. Physiology: Eye CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 20

  24. Perspective Projection and Image Formation Image plane/retina Lens Scene CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 21

  25. ����� ���� Physiology: Photoreceptors • Discrete sensors that measure energy • Adaptation • Rods ~ 120 million • Active at low light levels ( scotopic vision) • Only one wavelength-sensitivity function • Cones ~ 6-7 million • Active at normal light levels ( photoptic ) • Three types: sensitivity functions with different peaks 22 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  26. �������������� Retina CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 23

  27. Cone Sensitivity HyperPhysics, Georgia State University 24 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  28. Rod Sensitivity Function CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 25

  29. ������������������������ ������� CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 26

  30. ����������������������� ������������� Retinotopic Mapping CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 27

  31. Human Gaze •Vision made up of fixations and saccades • Fixation: 200-600 ms • Motion: 20-100 ms 28 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  32. CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 29

  33. Models of Color Vision •Tricolor theory •Opponent process theory 30 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  34. Trichromatic Theory • Three types of cones – each with a characteristic wavelength • Mixture of 3 responses defines color • Explains some psychophysical data • 3D color space (i.e. 3 colors match any perceived) 31 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  35. Trichromatic Theory • Metamers: match of an apparent color with a different spectral distribution (3D basis) • Color blindness (different types) 32 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  36. Trichromatic Theory CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 33

  37. Trichromatic Theory Shortcomings • Color blindness • R-G, B-Y, All • Yellow seems primary • Color constancy 34 CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception

  38. Note: Additive vs. Subtractive Colors Additive Subtractive CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 35

  39. Note: Additive vs. Subtractive Colors Additive coloring: Colors are produced by combining (adding) electromagnetic radiations of different wavelength / frequency. Example: computer screen CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 36

  40. Note: Additive vs. Subtractive Colors Subtractive coloring: Colors are obtained by combining things that absorb different portions of the visual spectrum when they reflect/scatter the incoming light. Subtractive coloring defines the “color” of objects . Additive Example: pigments of paint CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 37

  41. Color Blindness No L cones CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 38

  42. Color Blindness No M cones CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 39

  43. Color Blindness No L cones No M cones CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 40

  44. Color Blindness No L cones No M cones Red/green deficiencies CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 40

  45. Color Blindness No S cones CS530 / Spring 2020 : Introduction to Scientific Visualization. 01/28/2020 05. Vision and Color Perception 41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend