very high order finite volume scheme for the 2d linear
play

Very high-order finite volume scheme for the 2D linear - PowerPoint PPT Presentation

Very high-order finite volume scheme for the 2D linear convection-diffusion problem S. Clain 1 , 3 , G.J. Machado 1 , J.M. Nobrega 2 , R.M.S. Pereira 1 , A. Boularas 4 1 Mathematical Centre, University of Minho, Portugal 2 Institute for Polymers


  1. Very high-order finite volume scheme for the 2D linear convection-diffusion problem S. Clain 1 , 3 , G.J. Machado 1 , J.M. Nobrega 2 , R.M.S. Pereira 1 , A. Boularas 4 1 Mathematical Centre, University of Minho, Portugal 2 Institute for Polymers and Composites/I3N, University of Minho, Portugal 3 Mathematical Institute, Paul Sabatier University, France 4 Laplace centre, Paul Sabatier University, France Ofir, 2014 april-28th may-2nd

  2. Outline ➓ 2D linear convection-diffusion with finite volume ➓ Discretization and residual formulation ➓ Polynomial reconstructions ➓ Scheme design ➓ Numerical tests

  3. Model Find φ ✏ ♣ φ 1 , φ 2 q on the bounded open domain Ω such that ∇ . ♣ V 1 φ 1 ✁ k 1 ∇ φ 1 q ✏ f 1 , in Ω 1 , (1a) ∇ . ♣ V 2 φ 2 ✁ k 2 ∇ φ 2 q ✏ f 2 , in Ω 2 , (1b) k 1 ∇ φ 1 . n Γ ✏ k 2 ∇ φ 2 . n Γ , on Γ , (1c) φ ✏ φ D , (1d) on Γ D , φ 1 ✏ φ 2 on Γ or k 1 ∇ φ 1 . n Γ ✏ h ♣ φ 2 ✁ φ 1 q .

  4. Discretization ➺ ➺ ♣ V . n φ ✁ k ∇ φ. n q ds ✁ f dx ✏ 0 . (divergence theorem) ❇ c i c i ✑ ✙ ➳ ➳ R ⑤ e ij ⑤ ζ r V ♣ q ij , r q . n ij φ ♣ q ij , r q ✁ k ♣ q ij , r q ∇ φ ♣ q ij , r q . n ij j P ν ♣ i q r ✏ 1 ✁⑤ c i ⑤ f i ✏ O ♣ h 2 R i q . (Gauss Points)

  5. Residual formulation Based on the previous expression: the residual formulation is ➳ ➳ R ⑤ e ij ⑤ G i ✏ ζ r F ij , r ✁ f i , ⑤ c i ⑤ r ✏ 1 j P ν ♣ i q where F ij , r ✓ V ♣ q ij , r q . n ij φ ♣ q ij , r q ✁ k ♣ q ij , r q ∇ φ ♣ q ij , r q . n ij , approximation of the flux at the Gauss point q ij , r . ☞ Sixth-order approximation for F ij , r .

  6. Polynomial reconstructions

  7. Conservative reconstruction for cells c i : cell of mesh T h , d : the polynomial degree, S ♣ c i , d q : the associated stencil, φ i : mean value on c i . ✦ ✮ ➳ ♣ x ✁ b i q α ✁ M α ♣ R d ,α φ i ♣ x ; d q ✏ φ i � i i 1 ↕⑤ α ⑤↕ d α ✏ ♣ α 1 , α 2 q , ⑤ α ⑤ ✏ α 1 � α 2 , x ✏ ♣ x 1 , x 2 q , b i the centroid of cell c i ➺ i ✏ 1 ♣ x ✁ b i q α dx to provide the conservation. ☞ Set M α ⑤ c i ⑤ c i

  8. Coefficients for ♣ φ i i vector gathering coefficients R d ,α R d i Assume mean values φ ℓ on cells c ℓ , ℓ P S ♣ c i , d q are known, ♣ R d i minimizes the functional ➺ ✑ 1 ✙ 2 ➳ ♣ E i ♣ R d i ; d q ✏ φ i ♣ x ; d q dx ✁ φ ℓ , ⑤ c ℓ ⑤ c ℓ ℓ P S ♣ c i , d q ☞ Lead to an over-determined linear system A d i R d i ✏ b S i where b S i represents the variations φ ℓ ✁ φ i , ℓ P S ♣ c i ; d q

  9. Preconditioning and solving Determine the Moore-Penrose pseudo-inverse matrix for system ♣ A d i P d i q♣ P d i q ✁ 1 R d i ✏ b S i with the diagonal matrix P d i ✏ diag ♣⑤ c i ⑤ ✁⑤ α ⑤④ 2 q 1 ↕⑤ α ⑤↕ d . Motivation: the A d i matrix coefficients are ➺ ➺ 1 ♣ x ✁ b i q α dx ✁ 1 ♣ x ✁ b i q α dx . ⑤ c ℓ ⑤ ⑤ c i ⑤ c ℓ c i ☞ Strongly reduces the effect of the power α . i q ✿ and get We compute the pseudo inverse matrix ♣ A d i P d R d i ✏ P d i ♣ A d i P d i q ✿ b S i .

  10. Conservative reconstruction for Γ e ij ⑨ Γ : edge on the interface, c j the cell on the Ω 2 side, d : the polynomial degree, S ♣ c j , d q : the associated stencil. ✦ ✮ ➳ ♣ x ✁ b j q α ✁ M α q R d ,α φ j ♣ x ; d q ✏ φ j � . j j 1 ↕⑤ α ⑤↕ d b j the centroid of cell c j . ➺ j ✏ 1 ♣ x ✁ b j q α dx to provide the conservation. ☞ Set M α ⑤ c j ⑤ c j ☞ Only use the cells on the ” j ” side.

  11. Coefficients for q φ j j vector gathering coefficients R d ,α R d j Assume mean values φ ℓ on cells c ℓ , ℓ P S ♣ e ij , d q and φ ij the mean value on e ij are known, q R d j minimizes the functional ➺ ✑ 1 ✙ 2 ➳ q E j ♣ R d j ; d q ✏ φ j ♣ x ; d q dx ✁ φ ℓ ⑤ c ℓ ⑤ c ℓ ℓ P S ♣ c j , d q ➺ ✑ 1 ✙ 2 q � ω ij φ j ♣ x ; d q ds ✁ φ ij ⑤ e ij ⑤ e ij with ω ij a positive weight.

  12. Conservative reconstruction for Γ D e iD : edge on the boundary Γ D , d : the polynomial degree, S ♣ e iD , d q : the associated stencil, ➺ 1 φ iD ✏ φ D ♣ s q ds . ⑤ e iD ⑤ e iD ✦ ✮ ➳ ♣ x ✁ m iD q α ✁ M α ♣ R d ,α φ iD ♣ x ; d q ✏ φ iD � , iD iD 1 ↕⑤ α ⑤↕ d m iD the centroid of edge e iD ➺ 1 ♣ x ✁ m iD q α ds to provide the conservation. ☞ Set M α iD ✏ ⑤ e iD ⑤ e iD

  13. Coefficients for ♣ φ iD iD vector gathering coefficients R d ,α R d iD Assume mean values φ ℓ on cells c ℓ , ℓ P S ♣ e iD , d q are known, ♣ R d iD minimizes the functional ➺ ✑ 1 ✙ 2 ➳ ♣ E iD ♣ R d iD ; d q ✏ φ iD ♣ x ; d q dx ✁ φ ℓ ω iD ,ℓ , ⑤ c ℓ ⑤ c ℓ ℓ P S ♣ e iD , d q with ω iD ,ℓ positive weights. ☞ Coefficients ω iD ,ℓ are very important to provide ”good” properties.

  14. Non conservative reconstruction for inner edges e ij : inner edge of the mesh, d : the polynomial degree, S ♣ e ij , d q : the associated stencil, no value associated to e ij . ➳ r R d ,α ij ♣ x ✁ m ij q α φ ij ♣ x ; d q ✏ 0 ↕⑤ α ⑤↕ d m ij the centroid of edge e ij ☞ Coefficient R d ,α for ⑤ α ⑤ ✏ 0 is also unknown. ij

  15. Coefficients for r φ ij ij vector gathering coefficients R d ,α R d ij Assume mean values φ ℓ on cells c ℓ , ℓ P S ♣ e ij , d q are known, r R d ij minimizes the functional ➺ ✑ 1 ✙ 2 ➳ r E ij ♣ R d ij ; d q ✏ ω ij ,ℓ φ ij ♣ x ; d q dx ✁ φ ℓ , ⑤ c ℓ ⑤ c ℓ ℓ P S ♣ e ij , d q where ω ij ,ℓ are positive weights. ☞ One more time: coefficients ω ij ,ℓ are very important.

  16. Polynomial Reconstruction Operators ✌ Φ ✏ ♣ φ i q i P C the mean values vector. ✌ Operators Φ Ñ ♣ φ i , q φ j , ♣ φ iD , and r φ ij are linear. ✌ φ polynomial function of degree d , φ i the exact mean values. d -exact reconstruction if φ i ♣ x ; d q ✏ q ♣ φ j ♣ x ; d q ✏ ♣ φ iD ♣ x ; d q ✏ r φ ij ♣ x ; d q ✏ φ ♣ x q , x P R 2 . ☞ The finite volume method associated to the polynomial reconstruction is a d � 1 th -order method.

  17. The flux on edge (except Γ ) 1. e ij is an inner edge (not on Γ ), F ij , r ✏ r V ♣ q ij , r q . n ij s � ♣ φ i ♣ q ij , r ; d q � r V ♣ q ij , r q . n ij s ✁ ♣ φ j ♣ q ij , r ; d q ✁ k ♣ q ij , r q ∇ r φ ij ♣ q ij , r ; d q . n ij . 2. e iD belongs to Γ D , F iD , r ✏ r V ♣ q iD , r q . n iD s � ♣ φ i ♣ q iD , r ; d q � r V ♣ q iD , r q . n iD s ✁ φ D ♣ q iD , r q ✁ k ♣ q iD , r q ∇ ♣ φ iD ♣ q iD , r ; d q . n iD .

  18. The flux on edge of e ij ⑨ Γ ✌ Transfer condition: F ij , r ✏ h ♣ q ij , r qr ♣ φ i ♣ q ij , r ; d q ✁ ♣ φ j ♣ q ij , r ; d qs . ✌ Continuity condition: we perform three steps Step 1: compute the reconstructions ♣ φ i ♣ x ; d q for all c i ⑨ Ω 1 . ➺ 1 ♣ Step 2: compute φ ij ✏ φ i ♣ x ; d q ds for all e ij ⑨ Γ . ⑤ e ij ⑤ e ij Step 3: F ij , r ✏ k 2 ♣ q ij , r q ∇ q φ j ♣ q ij , r ; d q . n ij .

  19. Resolution ① The polynomial reconstruction operators are linear. ② The flux computations are linear. ③ The residual expression is linear: Φ Ñ G i ♣ Φ q . We get a linear operator Φ Ñ G ♣ Φ q ✏ ♣ G 1 ♣ Φ q , ..., G I ♣ Φ qq . Problem: Find Φ such that G ♣ Φ q ✏ 0 . ☛ Matrix-free problem: use GMRES method. Preconditioning is very very important: P preconditioning matrix substitute Φ Ñ G ♣ Φ q by Φ Ñ PG ♣ Φ q .

  20. Preconditioning matrix ☞ G ♣ Φ q ✏ A Φ ✁ b but we do not have matrix A : ILU not possible. Diagonal preconditioning matrix P ✏ D ✁ 1 with P ✒ k ♣ b i q ✚ ➳ D P ♣ i , i q ✏ 1 ⑤ b i b j ⑤ � r V ♣ m ij q . n ij s � ⑤ e ij ⑤ . ⑤ c i ⑤ j P ν ♣ i q More sophisticated preconditioning matrix, A P ✏ D P for the diagonal coefficients and ✒ ✚ A P ♣ i , j q ✏ ⑤ e ij ⑤ ✁ k ♣ m ij q ⑤ b i b j ⑤ � r V ♣ m ij q . n ij s ✁ , j P ν ♣ i q . ⑤ c i ⑤

  21. Incomplete inverse of A P Preconditioning matrix is supposed to be P ✏ A ✁ 1 P Substitute with the incomplete inverse A ✿ P with the same non-null entries of A P . Taking advantage of the structure of A P and A ✿ P provides explicit construction of A ✿ P P ♣ i , j q ✏ ✁ A P ♣ i , j q A ✿ P ♣ i , i q A ✿ A P ♣ j , j q , j P ν ♣ i q with 1 A ✿ P ♣ i , i q ✏ . ➳ A P ♣ i , j q A P ♣ j , i q A P ♣ i , i q ✁ A P ♣ j , j q j P ν ♣ i q

  22. Curved boundary treatment ☞ Problem: we set the boundary condition on the edge while it is prescribed on the curve. ✌ q iD , r Gauss points on e iD , ✌ p iD , r Gauss points on the curve, ♣ ✌ φ iD is evaluated using φ D ♣ q iD , r q and not φ D ♣ p iD , r q . ➳ R ☞ Idea: modify the mean value φ iD ✏ ζ r φ D ♣ q iD , r q ds but φ iD r ✏ 1 is still associated to edge e iD .

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend