velocity calibration and wavefield
play

Velocity calibration and wavefield Overview decomposition for - PowerPoint PPT Presentation

Velocity calibration and wavefield decomposition M. von Steht & J. Mann Velocity calibration and wavefield Overview decomposition for walkover VSP data Theory CRS stack for VSP FO CRS-Operator Calibration method Markus von Steht and


  1. CRS Operator for arbitrary geometry � 2 � τ 0 + sin β S ∆ x S − cos β S ∆ z S + sin β G ∆ x G − cos β G τ 2 = ∆ z G hyp v S v S v G v G τ 0 AB − 1 ( ∆ x S − ∆ z S tan β S ) 2 + τ 0 DB − 1 ( ∆ x G − ∆ z G tan β G ) 2 + 2 τ 0 B − 1 ( ∆ x S − ∆ z S tan β S ) ( ∆ x G − ∆ z G tan β G ) . −

  2. CRS Operator for arbitrary geometry � 2 � τ 0 + sin β S ∆ x S − cos β S ∆ z S + sin β G ∆ x G − cos β G τ 2 = ∆ z G hyp v S v S v G v G τ 0 AB − 1 ( ∆ x S − ∆ z S tan β S ) 2 + τ 0 DB − 1 ( ∆ x G − ∆ z G tan β G ) 2 + 2 τ 0 B − 1 ( ∆ x S − ∆ z S tan β S ) ( ∆ x G − ∆ z G tan β G ) . − ◮ τ 0 : traveltime of central FO ray

  3. CRS Operator for arbitrary geometry � 2 � τ 0 + sin β S ∆ x S − cos β S ∆ z S + sin β G ∆ x G − cos β G τ 2 = ∆ z G hyp v S v S v G v G τ 0 AB − 1 ( ∆ x S − ∆ z S tan β S ) 2 + τ 0 DB − 1 ( ∆ x G − ∆ z G tan β G ) 2 + 2 τ 0 B − 1 ( ∆ x S − ∆ z S tan β S ) ( ∆ x G − ∆ z G tan β G ) . − ◮ τ 0 : traveltime of central FO ray ◮ ∆ x S , ∆ z S , ∆ x G , ∆ z G : horizontal and vertical offsets

  4. CRS Operator for arbitrary geometry � 2 � τ 0 + sin β S ∆ x S − cos β S ∆ z S + sin β G ∆ x G − cos β G τ 2 = ∆ z G hyp v S v S v G v G τ 0 AB − 1 ( ∆ x S − ∆ z S tan β S ) 2 + τ 0 DB − 1 ( ∆ x G − ∆ z G tan β G ) 2 + 2 τ 0 B − 1 ( ∆ x S − ∆ z S tan β S ) ( ∆ x G − ∆ z G tan β G ) . − ◮ τ 0 : traveltime of central FO ray ◮ ∆ x S , ∆ z S , ∆ x G , ∆ z G : horizontal and vertical offsets ◮ v S , v G : velocities in the vicinity of � x S and � x G

  5. CRS Operator for arbitrary geometry � 2 � τ 0 + sin β S ∆ x S − cos β S ∆ z S + sin β G ∆ x G − cos β G τ 2 = ∆ z G hyp v S v S v G v G τ 0 AB − 1 ( ∆ x S − ∆ z S tan β S ) 2 + τ 0 DB − 1 ( ∆ x G − ∆ z G tan β G ) 2 + 2 τ 0 B − 1 ( ∆ x S − ∆ z S tan β S ) ( ∆ x G − ∆ z G tan β G ) . − ◮ τ 0 : traveltime of central FO ray ◮ ∆ x S , ∆ z S , ∆ x G , ∆ z G : horizontal and vertical offsets ◮ v S , v G : velocities in the vicinity of � x S and � x G ◮ β S , β G : emergence angles of central ray

  6. CRS Operator for arbitrary geometry � 2 � τ 0 + sin β S ∆ x S − cos β S ∆ z S + sin β G ∆ x G − cos β G τ 2 = ∆ z G hyp v S v S v G v G τ 0 AB − 1 ( ∆ x S − ∆ z S tan β S ) 2 + τ 0 DB − 1 ( ∆ x G − ∆ z G tan β G ) 2 + 2 τ 0 B − 1 ( ∆ x S − ∆ z S tan β S ) ( ∆ x G − ∆ z G tan β G ) . − ◮ τ 0 : traveltime of central FO ray ◮ ∆ x S , ∆ z S , ∆ x G , ∆ z G : horizontal and vertical offsets ◮ v S , v G : velocities in the vicinity of � x S and � x G ◮ β S , β G : emergence angles of central ray ◮ DB − 1 , AB − 1 , B − 1 : composites of elements of ray-propagator matrix

  7. Velocity calibration A look at multi-coverage walkover data and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  8. Velocity calibration A look at multi-coverage walkover data and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP CR FO CRS-Operator Calibration method Data example Survey description CS Velocity calibration qCO Decomposition Conclusions & outlook * W I T

  9. Velocity calibration Calibration of CRS attributes and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  10. Velocity calibration Calibration of CRS attributes and wavefield decomposition M. von Steht & J. Mann Stacking parameters are converted to wavefield Overview Theory attributes by using tuned velocities. CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  11. Velocity calibration Calibration of CRS attributes and wavefield decomposition M. von Steht & J. Mann Stacking parameters are converted to wavefield Overview Theory attributes by using tuned velocities. CRS stack for VSP FO CRS-Operator ◮ inaccurate velocities ⇔ incorrect attributes Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  12. Velocity calibration Calibration of CRS attributes and wavefield decomposition M. von Steht & J. Mann Stacking parameters are converted to wavefield Overview Theory attributes by using tuned velocities. CRS stack for VSP FO CRS-Operator ◮ inaccurate velocities ⇔ incorrect attributes Calibration method Data example ◮ conventional way: checkshot inversion Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  13. Velocity calibration Calibration of CRS attributes and wavefield decomposition M. von Steht & J. Mann Stacking parameters are converted to wavefield Overview Theory attributes by using tuned velocities. CRS stack for VSP FO CRS-Operator ◮ inaccurate velocities ⇔ incorrect attributes Calibration method Data example ◮ conventional way: checkshot inversion Survey description Velocity calibration often too inaccurate! Decomposition Conclusions & outlook W I T

  14. Velocity calibration Calibration of CRS attributes and wavefield decomposition M. von Steht & J. Mann Stacking parameters are converted to wavefield Overview Theory attributes by using tuned velocities. CRS stack for VSP FO CRS-Operator ◮ inaccurate velocities ⇔ incorrect attributes Calibration method Data example ◮ conventional way: checkshot inversion Survey description Velocity calibration often too inaccurate! Decomposition ◮ alternatively: CRS analysis of downgoing waves Conclusions & outlook W I T

  15. Velocity calibration Calibration of CRS attributes and wavefield decomposition M. von Steht & J. Mann Stacking parameters are converted to wavefield Overview Theory attributes by using tuned velocities. CRS stack for VSP FO CRS-Operator ◮ inaccurate velocities ⇔ incorrect attributes Calibration method Data example ◮ conventional way: checkshot inversion Survey description Velocity calibration often too inaccurate! Decomposition ◮ alternatively: CRS analysis of downgoing waves Conclusions & outlook Assumption: W I T

  16. Velocity calibration Calibration of CRS attributes and wavefield decomposition M. von Steht & J. Mann Stacking parameters are converted to wavefield Overview Theory attributes by using tuned velocities. CRS stack for VSP FO CRS-Operator ◮ inaccurate velocities ⇔ incorrect attributes Calibration method Data example ◮ conventional way: checkshot inversion Survey description Velocity calibration often too inaccurate! Decomposition ◮ alternatively: CRS analysis of downgoing waves Conclusions & outlook Assumption: ◮ velocities virtually constant within paraxial vicinity W I T

  17. Velocity calibration Calibration of CRS attributes and wavefield decomposition M. von Steht & J. Mann Stacking parameters are converted to wavefield Overview Theory attributes by using tuned velocities. CRS stack for VSP FO CRS-Operator ◮ inaccurate velocities ⇔ incorrect attributes Calibration method Data example ◮ conventional way: checkshot inversion Survey description Velocity calibration often too inaccurate! Decomposition ◮ alternatively: CRS analysis of downgoing waves Conclusions & outlook Assumption: ◮ velocities virtually constant within paraxial vicinity (already inherent assumption of CRS method) W I T

  18. Velocity calibration Calibration of CRS attributes and wavefield decomposition M. von Steht & J. Mann Stacking parameters are converted to wavefield Overview Theory attributes by using tuned velocities. CRS stack for VSP FO CRS-Operator ◮ inaccurate velocities ⇔ incorrect attributes Calibration method Data example ◮ conventional way: checkshot inversion Survey description Velocity calibration often too inaccurate! Decomposition ◮ alternatively: CRS analysis of downgoing waves Conclusions & outlook Assumption: ◮ velocities virtually constant within paraxial vicinity (already inherent assumption of CRS method) � independent of � � � � ➥ length of slowness vector p incidence angle W I T

  19. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  20. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  21. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory slowness component p t tangent to well CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  22. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory slowness component p t tangent to well CRS stack for VSP � � ➥ in general insufficient to determine � � p FO CRS-Operator � Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  23. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory slowness component p t tangent to well CRS stack for VSP � � ➥ in general insufficient to determine � � p FO CRS-Operator � Calibration method ◮ special case: walkover VSP Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  24. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory slowness component p t tangent to well CRS stack for VSP � � ➥ in general insufficient to determine � � p FO CRS-Operator � Calibration method ◮ special case: walkover VSP Data example Survey description ◮ p t of downgoing rays varies with source position � x S Velocity calibration Decomposition Conclusions & outlook W I T

  25. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory slowness component p t tangent to well CRS stack for VSP � � ➥ in general insufficient to determine � � p FO CRS-Operator � Calibration method ◮ special case: walkover VSP Data example Survey description ◮ p t of downgoing rays varies with source position � x S Velocity calibration Decomposition ◮ a ray tangent to well at receiver � x G is very likely Conclusions & outlook W I T

  26. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory slowness component p t tangent to well CRS stack for VSP � � ➥ in general insufficient to determine � � p FO CRS-Operator � Calibration method ◮ special case: walkover VSP Data example Survey description ◮ p t of downgoing rays varies with source position � x S Velocity calibration Decomposition ◮ a ray tangent to well at receiver � x G is very likely Conclusions & outlook � � � � there: naturally p t ≡ p � W I T

  27. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory slowness component p t tangent to well CRS stack for VSP � � ➥ in general insufficient to determine � � p FO CRS-Operator � Calibration method ◮ special case: walkover VSP Data example Survey description ◮ p t of downgoing rays varies with source position � x S Velocity calibration Decomposition ◮ a ray tangent to well at receiver � x G is very likely Conclusions & outlook � � � � there: naturally p t ≡ p � ◮ Strategy W I T

  28. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory slowness component p t tangent to well CRS stack for VSP � � ➥ in general insufficient to determine � � p FO CRS-Operator � Calibration method ◮ special case: walkover VSP Data example Survey description ◮ p t of downgoing rays varies with source position � x S Velocity calibration Decomposition ◮ a ray tangent to well at receiver � x G is very likely Conclusions & outlook � � � � there: naturally p t ≡ p � ◮ Strategy ◮ identify downgoing direct P and/or S arrivals W I T

  29. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory slowness component p t tangent to well CRS stack for VSP � � ➥ in general insufficient to determine � � p FO CRS-Operator � Calibration method ◮ special case: walkover VSP Data example Survey description ◮ p t of downgoing rays varies with source position � x S Velocity calibration Decomposition ◮ a ray tangent to well at receiver � x G is very likely Conclusions & outlook � � � � there: naturally p t ≡ p � ◮ Strategy ◮ identify downgoing direct P and/or S arrivals ◮ calculate p t � � x S ,� � x G ∀ sources S and receivers G W I T

  30. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory slowness component p t tangent to well CRS stack for VSP � � ➥ in general insufficient to determine � � p FO CRS-Operator � Calibration method ◮ special case: walkover VSP Data example Survey description ◮ p t of downgoing rays varies with source position � x S Velocity calibration Decomposition ◮ a ray tangent to well at receiver � x G is very likely Conclusions & outlook � � � � there: naturally p t ≡ p � ◮ Strategy ◮ identify downgoing direct P and/or S arrivals ◮ calculate p t � � x S ,� � x G ∀ sources S and receivers G ◮ for each G , search maximum of p t � � � x S ,� x G = const W I T

  31. Velocity calibration Calibration strategy and wavefield decomposition M. von Steht & J. Mann ◮ VSP data provides only one slowness component: Overview Theory slowness component p t tangent to well CRS stack for VSP � � ➥ in general insufficient to determine � � p FO CRS-Operator � Calibration method ◮ special case: walkover VSP Data example Survey description ◮ p t of downgoing rays varies with source position � x S Velocity calibration Decomposition ◮ a ray tangent to well at receiver � x G is very likely Conclusions & outlook � � � � there: naturally p t ≡ p � ◮ Strategy ◮ identify downgoing direct P and/or S arrivals ◮ calculate p t � � x S ,� � x G ∀ sources S and receivers G ◮ for each G , search maximum of p t � � � x S ,� x G = const �� − 1 � � � � � � x S ; � searched-for velocity v x G = max p t x G ➥ W I T

  32. Velocity calibration surface and wavefield decomposition well M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  33. Velocity calibration surface and wavefield decomposition well M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method downgoing ray Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  34. Velocity calibration surface and wavefield decomposition well M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method downgoing ray Data example Survey description Velocity calibration Decomposition Conclusions & outlook searched−for { observable: slowness tangent vector slowness W I T component ?

  35. Velocity calibration surface and wavefield decomposition well M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  36. Velocity calibration surface and wavefield decomposition well M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  37. Velocity calibration surface and wavefield decomposition well M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook tangent length of = slowness slowness W I T component vector

  38. Velocity calibration surface and wavefield decomposition well M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  39. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  40. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  41. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP ◮ velocity v G is property of receiver position FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  42. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP ◮ velocity v G is property of receiver position FO CRS-Operator Calibration method ➥ applicable to also calibrate reflected waves Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  43. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP ◮ velocity v G is property of receiver position FO CRS-Operator Calibration method ➥ applicable to also calibrate reflected waves Data example Survey description ◮ Geometric interpretation provides Velocity calibration Decomposition Conclusions & outlook W I T

  44. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP ◮ velocity v G is property of receiver position FO CRS-Operator Calibration method ➥ applicable to also calibrate reflected waves Data example Survey description ◮ Geometric interpretation provides Velocity calibration ◮ emergence angles Decomposition Conclusions & outlook W I T

  45. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP ◮ velocity v G is property of receiver position FO CRS-Operator Calibration method ➥ applicable to also calibrate reflected waves Data example Survey description ◮ Geometric interpretation provides Velocity calibration ◮ emergence angles Decomposition ◮ wavefront curvatures Conclusions & outlook W I T

  46. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP ◮ velocity v G is property of receiver position FO CRS-Operator Calibration method ➥ applicable to also calibrate reflected waves Data example Survey description ◮ Geometric interpretation provides Velocity calibration ◮ emergence angles Decomposition ◮ wavefront curvatures Conclusions & outlook ◮ suited for W I T

  47. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP ◮ velocity v G is property of receiver position FO CRS-Operator Calibration method ➥ applicable to also calibrate reflected waves Data example Survey description ◮ Geometric interpretation provides Velocity calibration ◮ emergence angles Decomposition ◮ wavefront curvatures Conclusions & outlook ◮ suited for ◮ wavefield decomposition W I T

  48. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP ◮ velocity v G is property of receiver position FO CRS-Operator Calibration method ➥ applicable to also calibrate reflected waves Data example Survey description ◮ Geometric interpretation provides Velocity calibration ◮ emergence angles Decomposition ◮ wavefront curvatures Conclusions & outlook ◮ suited for ◮ wavefield decomposition ➥ data example W I T

  49. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP ◮ velocity v G is property of receiver position FO CRS-Operator Calibration method ➥ applicable to also calibrate reflected waves Data example Survey description ◮ Geometric interpretation provides Velocity calibration ◮ emergence angles Decomposition ◮ wavefront curvatures Conclusions & outlook ◮ suited for ◮ wavefield decomposition ➥ data example ◮ redatuming W I T

  50. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP ◮ velocity v G is property of receiver position FO CRS-Operator Calibration method ➥ applicable to also calibrate reflected waves Data example Survey description ◮ Geometric interpretation provides Velocity calibration ◮ emergence angles Decomposition ◮ wavefront curvatures Conclusions & outlook ◮ suited for ◮ wavefield decomposition ➥ data example ◮ redatuming ◮ inversion W I T

  51. Velocity calibration Application of tuned velocities and wavefield decomposition M. von Steht & J. Mann Overview ◮ separate calibration for P- and S-waves Theory CRS stack for VSP ◮ velocity v G is property of receiver position FO CRS-Operator Calibration method ➥ applicable to also calibrate reflected waves Data example Survey description ◮ Geometric interpretation provides Velocity calibration ◮ emergence angles Decomposition ◮ wavefront curvatures Conclusions & outlook ◮ suited for ◮ wavefield decomposition ➥ data example ◮ redatuming ◮ inversion ◮ strategy also suited for deviated wells W I T

  52. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  53. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T P-wave velocity [km/s]

  54. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP Modeling: FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  55. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP Modeling: FO CRS-Operator Calibration method ◮ wavefront construction method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  56. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP Modeling: FO CRS-Operator Calibration method ◮ wavefront construction method Data example Survey description ◮ direct P , reflected PP & SS, converted PS Velocity calibration Decomposition Conclusions & outlook W I T

  57. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP Modeling: FO CRS-Operator Calibration method ◮ wavefront construction method Data example Survey description ◮ direct P , reflected PP & SS, converted PS Velocity calibration Decomposition ◮ 3D wave propagation Conclusions & outlook W I T

  58. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP Modeling: FO CRS-Operator Calibration method ◮ wavefront construction method Data example Survey description ◮ direct P , reflected PP & SS, converted PS Velocity calibration Decomposition ◮ 3D wave propagation Conclusions & outlook ◮ two walkover lines, 100 shots each W I T

  59. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP Modeling: FO CRS-Operator Calibration method ◮ wavefront construction method Data example Survey description ◮ direct P , reflected PP & SS, converted PS Velocity calibration Decomposition ◮ 3D wave propagation Conclusions & outlook ◮ two walkover lines, 100 shots each ◮ 40 three-component receiver levels W I T

  60. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP Modeling: FO CRS-Operator Calibration method ◮ wavefront construction method Data example Survey description ◮ direct P , reflected PP & SS, converted PS Velocity calibration Decomposition ◮ 3D wave propagation Conclusions & outlook ◮ two walkover lines, 100 shots each ◮ 40 three-component receiver levels ◮ 2D approach sufficiently accurate for calibration W I T

  61. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  62. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory convenient CRS parameter: emergence angle CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  63. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory convenient CRS parameter: emergence angle CRS stack for VSP ➥ tangency ≡ zero angle FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  64. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory convenient CRS parameter: emergence angle CRS stack for VSP ➥ tangency ≡ zero angle FO CRS-Operator Calibration method Data example Expected behavior: Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  65. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory convenient CRS parameter: emergence angle CRS stack for VSP ➥ tangency ≡ zero angle FO CRS-Operator Calibration method Data example Expected behavior: Survey description Velocity calibration ◮ over-estimated velocity Decomposition Conclusions & outlook W I T

  66. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory convenient CRS parameter: emergence angle CRS stack for VSP ➥ tangency ≡ zero angle FO CRS-Operator Calibration method Data example Expected behavior: Survey description Velocity calibration ◮ over-estimated velocity Decomposition Conclusions & outlook zero angle smeared over large offset range W I T

  67. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory convenient CRS parameter: emergence angle CRS stack for VSP ➥ tangency ≡ zero angle FO CRS-Operator Calibration method Data example Expected behavior: Survey description Velocity calibration ◮ over-estimated velocity Decomposition Conclusions & outlook zero angle smeared over large offset range ◮ under-estimated velocity W I T

  68. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory convenient CRS parameter: emergence angle CRS stack for VSP ➥ tangency ≡ zero angle FO CRS-Operator Calibration method Data example Expected behavior: Survey description Velocity calibration ◮ over-estimated velocity Decomposition Conclusions & outlook zero angle smeared over large offset range ◮ under-estimated velocity zero angle never occurs W I T

  69. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory convenient CRS parameter: emergence angle CRS stack for VSP ➥ tangency ≡ zero angle FO CRS-Operator Calibration method Data example Expected behavior: Survey description Velocity calibration ◮ over-estimated velocity Decomposition Conclusions & outlook zero angle smeared over large offset range ◮ under-estimated velocity zero angle never occurs ◮ correct velocity W I T

  70. Velocity calibration Model and survey geometry and wavefield decomposition M. von Steht & J. Mann Overview Theory convenient CRS parameter: emergence angle CRS stack for VSP ➥ tangency ≡ zero angle FO CRS-Operator Calibration method Data example Expected behavior: Survey description Velocity calibration ◮ over-estimated velocity Decomposition Conclusions & outlook zero angle smeared over large offset range ◮ under-estimated velocity zero angle never occurs ◮ correct velocity well-localized minimum at zero angle W I T

  71. Velocity calibration Calibration using checkshot inversion and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  72. Velocity calibration Calibration using checkshot inversion and wavefield decomposition M. von Steht & J. Mann shot index 20 40 60 80 100 Overview Theory CRS stack for VSP 5 FO CRS-Operator Calibration method 7 15 10 Data example Survey description Velocity calibration receiver index 15 15 Decomposition 7 7 Conclusions & outlook 20 15 7 25 15 7 30 15 35 7 60 30 60 40 isoclines of emergence angle [ ◦ ] W I T

  73. Velocity calibration Calibration with initial model and wavefield decomposition M. von Steht & J. Mann shot index 20 40 60 80 100 Overview Theory CRS stack for VSP 5 FO CRS-Operator Calibration method 10 Data example Survey description Velocity calibration receiver index 15 Decomposition 7 Conclusions & outlook 20 25 7 30 7 35 15 60 30 15 30 60 40 isoclines of emergence angle [ ◦ ] W I T

  74. Velocity calibration Calibration with corrected model and wavefield decomposition M. von Steht & J. Mann shot index 20 40 60 80 100 Overview Theory CRS stack for VSP 5 FO CRS-Operator Calibration method 10 Data example Survey description Velocity calibration receiver index 15 Decomposition Conclusions & outlook 20 25 30 15 35 15 60 30 7 7 30 60 40 isoclines of emergence angle [ ◦ ] W I T

  75. Velocity calibration Forward-modeled angles and wavefield decomposition M. von Steht & J. Mann shot index 20 40 60 80 100 Overview Theory CRS stack for VSP 5 FO CRS-Operator Calibration method 10 Data example Survey description Velocity calibration receiver index 15 Decomposition Conclusions & outlook 20 25 30 35 60 60 30 15 7 15 30 40 isoclines of emergence angle [ ◦ ] W I T

  76. Velocity calibration 1D velocity curves along well and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  77. Velocity calibration 1D velocity curves along well and wavefield decomposition M. von Steht & J. Mann 3000 Overview Inverted Model Initial Model Theory Calibrated Model CRS stack for VSP 2800 FO CRS-Operator Calibration method 2600 Data example Survey description Velocity calibration P-wave velocity [m/s] 2400 Decomposition Conclusions & outlook 2200 2000 1800 1600 1400 200 300 400 500 600 700 800 900 W I T depth [m]

  78. Velocity calibration CRS-based wavefield decomposition and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T

  79. Velocity calibration CRS-based wavefield decomposition and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook W I T Components (V,H) prior to rotation

  80. Velocity calibration CRS-based wavefield decomposition and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook Components (R,T) after rotation by β P W I T G – R is strong

  81. Velocity calibration CRS-based wavefield decomposition and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook Components (R,T) after rotation by β S W I T G – T is strong

  82. Velocity calibration Five CS gathers prior to rotation and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook vertical component W I T

  83. Velocity calibration Five CS gathers prior to rotation and wavefield decomposition M. von Steht & J. Mann Overview Theory CRS stack for VSP FO CRS-Operator Calibration method Data example Survey description Velocity calibration Decomposition Conclusions & outlook horizontal component W I T

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend