v k l s
play

V = k L s L is the normal load s is the sliding distance at - PowerPoint PPT Presentation

Trends in Archards Wear law at the Macroscale Nanotribology 2017 Adhesive wear process Assumptions - Multi-asperity contact - Plastic or fracture deformations (governed by hardness) - Real contact area is proportional to the normal load


  1. Trends in Archard’s Wear law at the Macroscale Nanotribology 2017 ¡ Adhesive wear process Assumptions - Multi-asperity contact - Plastic or fracture deformations (governed by hardness) - Real contact area is proportional to the normal load Δ V is the volume loss due to wear Δ V = k L × s L is the normal load s is the sliding distance at constant sliding speed H soft H soft is the hardness of the softer material 1 ¡

  2. Trends in Archard’s Wear law at the Macroscale Nanotribology 2017 ¡ Steady-state Running-in Δ V ¡ Δ V is the wear volume ¡ Classical view of s l o p e i s t h e Archard’s law: volumetric wear Barwell’s law: rate Δ V steady − state = k L × t ⎛ ⎞ ⎛ ⎞ Δ V running − in = w 0 τ w 1 − exp − t ⎜ ⎜ ⎟ ⎟ H soft τ w ⎝ ⎠ ⎝ ⎠ F. ¡T. ¡Barwell, ¡Wear ¡1, ¡317 ¡(1958). ¡ t (duration of wear ) Δ V steady − state In the Archard’s law, the wear rate, is s independent of the sliding speed, if the sliding distance, s, is kept constant. 2 ¡

  3. Atomistic wear in a single asperity Trends in Nanotribology 2017 sliding contact ¡ Wear of a Silicon AFM probe on a polymer surface 16 a) c) 14 60 12 pulloff force (nN) tip radius (nm) 10 40 data 8 Archard fit free exponent fit 6 b) 20 4 2 0 0 0 200 400 600 800 sliding distance (m) “Wear occurs through an atom by atom removal process which implies the breaking of individual bonds” 3 ¡ B. ¡Gotsmann ¡and ¡M. ¡A. ¡Lantz, ¡ PRL ¡101, ¡125501 ¡(2008) ¡

  4. Trends in Atomistic Simulation of NanoWear Nanotribology 2017 ¡ D w d � ¼ l � ð s 2 j = G Þ a ? b c Molinari ¡et ¡al. ¡Nature ¡CommunicaLons, ¡11816, ¡(2016) ¡ 4 ¡

  5. Trends in NanoWear Experiments with the AFM Nanotribology 2017 ¡ - Single asperity contact • Main advantage: • Limitations: - N o n c o n s t a n t a n d continuous sliding speed - L o w s l i d i n g s p e e d (typically max.100 µ m/s) - Scan drift leads to non well defined wear track 5 ¡

  6. Trends in Wear Experiments using the CM-AFM Nanotribology 2017 ¡ H.Nasrallah, ¡P-­‑E ¡Mazeran, ¡O.Noel. ¡Rev. ¡Sci. ¡Instrum. ¡ 2011, ¡82, ¡113703. ¡ ¡ Conven&onal)Mode) CM,AFM) Solicita(on*velocity* Low*scanning*or*sliding*velocity** High*sliding*velocity** (typically,*ranging*from*1*µm/s*to*100*µm/s)* (>*6*mm/s)* Advantages*/* High)scanner)dri1;)Low)wear;) Limi(ng*scanner*driC;* Drawbacks) high)shear)force)when)the)scan)changes)its) high*wear*in*a*limi(ng* direc7on) (me;*wellEdefined* wear*track;*isotropic* wear*of*the*probe*if* any;*anisotropic*wear* revealed*if*any;*local* probing*** 6 ¡

  7. Trends in Wear volume computation Nanotribology 2017 ¡ Topography before Topography after Difference wear wear 3 wear image Height (nm) Averaged height of the -2 wear track obtained with a sharp (40 nm of radius) AFM probe -7 1000 1200 1400 1600 1800 Distance from wear track center (nm) 7 ¡

  8. Comparative analysis of Macro and Trends in Nanotribology 2017 Nano wear of copper based composite ¡ Processing Method: Powder Metallurgy SEM and EDX images followed by internal oxidation Designation Average Sample Micro size roughness Hardness particules Rq V 50 Nano- Less than 4.02 nm 224 composite 100 nm AFM image 5 µ m X 5 µ m Amount of nanoparticles FricLon ¡coefficient ¡with ¡steel ¡is ¡0.13 ¡in ¡the ¡steady-­‑state ¡and ¡is ¡ 4.7 wt% and 10% in volume independent ¡of ¡the ¡sliding ¡speed ¡ SEM image of wear track after the ! At the macro-scale, macro tests wear of the nano- (1 N; 8 mm/s) composite follows Mostly adhesive and Archard wear laws light abrasive wear 8 ¡

  9. Trends in Heterogeneity of Nano-wear Nanotribology 2017 ¡ Black&spots& White&spot& 9 ¡

  10. Wear Volume vs. Sliding Distance Trends in Nanotribology 2017 (or wear duration) ¡ Sliding speed of 0.88 mm/s; Normal load = 3 µ N; Diamond Probe t = 2 min. t = 4 min. t = 1 min. t = 8 min. t = 16 min. t = 32 min. 10 ¡

  11. Trends in Wear Volume vs. Sliding Distance Nanotribology 2017 ¡ Si 3 N 4 Probe radius: 100 nm DLC Probe radius: 200 nm like behavior like behavior like behavior like behavior - SEM images do not evidence wear of the probes (counter body). - In both cases, we have an asymptotic steady-state 11 ¡

  12. Trends in Wear volume vs. Normal Load Nanotribology 2017 ¡ 70 nN 100 nN 140 nN 200 nN 12 ¡

  13. Trends in Wear volume vs. Normal Load Nanotribology 2017 ¡ Experiments ¡performed ¡in ¡the ¡running-­‑in-­‑like ¡regime ¡if ¡we ¡refer ¡to ¡a ¡macroscopic ¡view ¡of ¡wear ¡ ¡ DLC probe radius: 200 nm Si 3 N 4 probe radius: 100 nm 7 1.4 Wear,volume,×,10 6 ,,nm 3 Wear*volume*×*10 6 ,*nm 3 Tip:,Si 3 N 4 Tip:*DLC 5.77 6 1.2 1.11 Speed:,0.88,mm/s Speed:*0.88*mm/s Distance:,106,mm Distance:*106*mm 5 1.0 4 0.8 3.00 , 3 0.6 2 0.4 1.42 0.30 slope = 0.04 (10 6 nm 3 .nN) 1 0.2 0.23 slope = 4 (10 6 nm 3 .nN) 0 0.0 0 30 60 90 120 150 180 210 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 ! Normal,load,,nN ! Normal*load,*µN - Archard-like wear law is obtained. - Wear depends on the nature of the counter-body. - For Si 3 N 4 there is a critical threshold load (about 60 nN) from which wear loss is significant. - If we consider a single asperity contact, this latter behavior is governed by the 13 ¡ lateral force which is proportional to the normal load. Eder ¡et ¡al., ¡PRL, ¡115, ¡025502 ¡(2015) ¡

  14. Estimation of the threshold normal Trends in Nanotribology 2017 load ¡ • For a probe radius, R = 100 nm, and a normal load, L = 60 nN (threshold value for SiN probe), the contact radius (Hertz model), a, is: a = 4 nm and the contact pressure is 1.20 GPa < H of sample 2.45 GPa (Hardness of copper oxide is 4-5 GPa). • According to the Hertz theory, the shear stress is maximum at a depth of 0.78 a = 3 nm. This depth corresponds to the thickness of oxide copper growths in ambient conditions. • Therefore, 60 nN corresponds exactly to the normal load that generates a maximum shear stress at a depth of 3 nm. • The threshold value may correspond to the minimum load to apply to shear the interface of the oxide/metal interface. 14 ¡

  15. Trends in Wear Volume vs. sliding speed Nanotribology 2017 ¡ DLC Probe radius: 200 nm Si 3 N 4 Probe radius: 100 nm 40 10 38.21 Wear,rate,×,10 3 ,,nm 3 /mm Wear,rate,×,10 3 ,,nm 3 /mm Tip:,DLC Tip:,Si 3 N 4 9 35 Load:,1,µN Load:,100,nN 8 30 Distance:,317,mm Distance:,106,–,739,mm 7 6.42 5.98 5.96 25 6 Running-in Steady-state 5.84 5.81 20 5 4.72 , 4 15 3.56 3 11.72 9.28 10 2 At the border of the steady-state 3.90 3.64 3.39 3.24 5 1 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 ! ! Sliding,speed,,mm/s Sliding,speed,,mm/s - Wear rate is independent of the sliding speed (for a given sliding distance et a given normal load) in the steady-state (from the macroscopic view) regime. 15 ¡

  16. Trends in Conclusions and perspectives Nanotribology 2017 ¡ • The methodology based on the CM-AFM gives well-defined wear tracks as the drift of the scanner is limited and the wear loss is significant. • Well defined wear tracks allows measuring quantitative values. • Nano-wear heterogeneity is revealed. Nano-wear of nano-composite, • Archard-like wear laws are revealed at the nanoscale but it does not mean we have the same mechanisms involved as for the macroscale • Wear process may be not governed by the hardness but by the lateral force (or shear stress) and by the physico-chemical interactions in the contact (depending on the nature of the counter-body) • Can we still think in the same way as for the macroscopic view (running-in, steady-state…) ? 16 ¡

  17. Pure copper Wear loss vs. sliding distance Trends in Nanotribology 2017 ¡ 4500 ¡ Wear loss 4000 ¡ 3500 ¡ 3000 ¡ 2500 ¡ 2000 ¡ 1500 ¡ 1000 ¡ 500 ¡ 0 ¡ 0 ¡ 200 ¡ 400 ¡ 600 ¡ 800 ¡ 1000 ¡ 1200 ¡ 1400 ¡ 1600 ¡ Sliding ¡distance, ¡mm ¡ 17 ¡

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend