v alid a rguments
play

V ALID A RGUMENTS ? If God does not exist, then it is not G (P A) - PowerPoint PPT Presentation

V ALID A RGUMENTS ? If God does not exist, then it is not G (P A) true that if I pray, then my prayers P will be answered. I dont pray. G Therefore, there is a God. If it is true that if I pray then my (P A) G


  1. V ALID A RGUMENTS ? If God does not exist, then it is not ¬G → ¬(P → A) true that if I pray, then my prayers ¬P will be answered. I don’t pray. G Therefore, there is a God. If it is true that if I pray then my (P → A) → G prayers will be answered, then ¬P there is a God. But I don’t pray. G Therefore, there is a God. Friday, September 24, 2010

  2. P ROOFS W ITH C ONDITIONALS 3 Friday, 24 September Friday, September 24, 2010

  3. F ORMAL P ROOF R ULES ↔ Introduction: from a proof from P to Q and a proof from Q to P , we can infer P ↔ Q. 1. P … j. Q k. Q … m. P k. P ↔ Q ↔ Intro: 1-j, k-m Friday, September 24, 2010

  4. P ARADOXES OF M ATERIAL I MPLICATION We did this by showing that: Last time we showed: ¬P ∨ Q ¬P Q and P → Q P → Q P → Q 1. ¬P 1. Q 2. P for → Intro 2. P for → Intro 3. ⊥ ⊥ Intro 1,2 3. Q Reit 1 4. Q ⊥ Elim 3 5. P → Q → Intro 2-3 5. P → Q → Intro 2-4 Friday, September 24, 2010

  5. T HE O THER D IRECTION 1. P → Q Example: 2. ¬(¬P ∨ Q) for ¬Intro P → Q ¬P ∨ Q 3. ¬P for ¬Intro 4. ¬P ∨ Q vIntro 3 5. ⊥ ⊥ Intro 2,4 6. P ¬Intro 3-5 7. Q → Elim 1,6 8. ¬P ∨ Q vIntro 7 ⊥ ⊥ Intro ¬Intro 2- ¬P ∨ Q Friday, September 24, 2010

  6. T HE O THER D IRECTION 1. P → Q Example: 2. ¬(¬P ∨ Q) for ¬Intro P → Q ¬P ∨ Q 3. ¬P for ¬Intro 4. ¬P ∨ Q vIntro 3 5. ⊥ ⊥ Intro 2,4 6. P ¬Intro 3-5 7. Q → Elim 1,6 8. ¬P ∨ Q vIntro 7 9. ⊥ ⊥ Intro 2,8 ¬Intro 2-9 10. ¬P ∨ Q Friday, September 24, 2010

  7. P ROVING B ICONDITIONALS We have now proved: P → Q ¬P ∨ Q and P → Q ¬P ∨ Q Therefore we could prove: (P → Q) ↔ (¬P ∨ Q) Friday, September 24, 2010

  8. P ROVING B ICONDITIONALS 1. P → Q for ↔ Intro (P → Q) ↔ (¬P ∨ Q) ¬P ∨ Q ¬P ∨ Q for ↔ Intro P → Q (P → Q) ↔ (¬P ∨ Q) ↔ Intro Friday, September 24, 2010

  9. 1. P → Q ¬P ∨ Q ¬P ∨ Q P → Q (P → Q) ↔ (¬P ∨ Q) ↔ Intro 1-10, 11-18 Friday, September 24, 2010

  10. B ICONDITIONALS AND E QUIVALENCE We have now proved: (P → Q) ↔ (¬P ∨ Q) If a biconditional is a logical truth then the two parts are logically equivalent: (P → Q) ⇔ (¬P ∨ Q) Friday, September 24, 2010

  11. C HAINS OF E QUIVALENCE (P → Q) ⇔ (¬P ∨ Q) When a conditional is true By DeMorgan’s (¬P ∨ Q) ⇔ ¬(P ∧ ¬Q) Therefore (P → Q) ⇔ ¬(P ∧ ¬Q) and so ¬(P → Q) ⇔ (P ∧ ¬Q) When a conditional is false Friday, September 24, 2010

  12. N EGATED C ONDITIONALS 1. P → Q for ↔ Intro (P → Q) ↔ ¬(P ∧ ¬Q) ¬(P ∧ ¬Q) ¬(P ∧ ¬Q) for ↔ Intro P → Q (P → Q) ↔ ¬(P ∧ ¬Q) ↔ Intro Friday, September 24, 2010

  13. 1. P → Q for ↔ Intro 2. P ∧ ¬Q for ¬ Intro 3. P ∧ Elim2 4. ¬Q ∧ Elim2 5. Q → Elim1,3 6. ⊥ ⊥ Intro 4,5 7. ¬(P ∧ ¬Q) ¬Intro 2-6 ¬(P ∧ ¬Q) 8. ¬(P ∧ ¬Q) for ↔ Intro ¬(P ∧ ¬Q) for ↔ Intro 9. P for → Intro 10. ¬Q for ¬ Intro 11. P ∧ ¬Q ∧ Intro 9,10 12. ⊥ ⊥ Intro 8,11 Q ¬ Intro P → Q → Intro 9- (P → Q) ↔ ¬(P ∧ ¬Q) ↔ Intro Friday, September 24, 2010

  14. 1. P → Q for ↔ Intro 2. P ∧ ¬Q for ¬ Intro 3. P ∧ Elim2 4. ¬Q ∧ Elim2 5. Q → Elim1,3 6. ⊥ ⊥ Intro 4,5 7. ¬(P ∧ ¬Q) ¬Intro 2-6 8. ¬(P ∧ ¬Q) for ↔ Intro 9. P for → Intro 10. ¬Q for ¬ Intro 11. P ∧ ¬Q ∧ Intro 9,10 12. ⊥ ⊥ Intro 8,11 13. Q ¬ Intro 10-12 14. P → Q → Intro 9-13 15. (P → Q) ↔ ¬(P ∧ ¬Q) ↔ Intro 1-7, 8-14 Friday, September 24, 2010

  15. P USHING N EGATIONS I NSIDE DeMorgan’s Laws With repeated applications of ¬(P ∨ Q) ⇔ (¬P ∧ ¬Q) these rules, we can convert any sentence with main ¬(P ∧ Q) ⇔ (¬P ∨ ¬Q) connective ¬ into something Negated Conditional with a different main connective. ¬(P → Q) ⇔ (P ∧ ¬Q) Negated Biconditional Or get rid of any particular ¬(P ↔ Q) ⇔ (¬P ↔ Q) connectives that we don’t like Friday, September 24, 2010

  16. D OUBLE R EDUCTIOS The Law of the Excluded Middle P ∨ ¬P 1. ¬(P ∨ ¬P) for ¬Intro 2. P for ¬Intro 3. P ∨ ¬P ∨ Intro 2 4. ⊥ ⊥ Intro 1,3 5. ¬P ¬Intro 2-4 6. P ∨ ¬P ∨ Intro 5 ⊥ P ∨ ¬P ¬Intro Friday, September 24, 2010

  17. D OUBLE R EDUCTIOS The Law of the Excluded Middle P ∨ ¬P 1. ¬(P ∨ ¬P) for ¬Intro 2. P for ¬Intro 3. P ∨ ¬P ∨ Intro 2 4. ⊥ ⊥ Intro 1,3 5. ¬P ¬Intro 2-4 6. P ∨ ¬P ∨ Intro 5 7. ⊥ ⊥ Intro 1,6 P ∨ ¬P ¬Intro 1-7 Friday, September 24, 2010

  18. D OUBLE R EDUCTIOS 1. A → B A → B 2. ¬A → B ¬A → B 3. ¬B for ¬ Intro 4. A for ¬ Intro B 5. B → Elim 1,3 6. ⊥ ⊥ Intro 3,5 7. ¬A ¬ Intro 4-6 8. B → Elim 2,7 9. ⊥ ⊥ Intro 3,8 B ¬Intro 3-9 Friday, September 24, 2010

  19. U SING LEM 1. A → B 1. A → B 2. ¬A → B 2. ¬A → B 3. ¬B for ¬ Intro 3. A ∨ ¬A LEM 4. A for ¬ Intro 4. A for ∨ Elim 5. B → Elim 1,3 5. B → Elim 1,3 6. ⊥ ⊥ Intro 3,5 7. ¬A ¬ Intro 4-6 6. ¬A for ∨ Elim 8. B → Elim 2,7 7. B → Elim 2,6 9. ⊥ ⊥ Intro 3,8 10. B ¬Intro 3-9 8. B ∨ Elim 3,4-5,6-7 Friday, September 24, 2010

  20. H OW TO R EALLY DO P ROOFS 6.42 in LPL book 1. ¬(¬A ∨ ¬(¬B ∧ (¬A ∨ B))) for ¬I 2. A ∧ (¬B ∧ (¬A ∨ B)) DeMorgans ¬A ∨ ¬(¬B ∧ (¬A ∨ B)) 3. A ∧ Elim 4. ¬B ∧ Elim 5. ¬A ∨ B ∧ Elim 6. ⊥ from 3-5 ¬A ∨ ¬(¬B ∧ (¬A ∨ B)) Friday, September 24, 2010

  21. R EALLY H ARD P ROOFS P ↔ (Q ↔ R) This is by no means trivial! (P ↔ Q) ↔ R (like it is with ∧ and ∨ ) P ↔ (Q ↔ R) does NOT mean P ⇔ Q ⇔ R For example, P ⇔ P ↔ P P ↔ (P ↔ P) is NOT a tautology Friday, September 24, 2010

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend