unstable pole zero cancelled system
play

Unstable Pole-Zero Cancelled System 1. e ( n ) 1 y ( n ) E ( z ) z - PowerPoint PPT Presentation

Unstable Pole-Zero Cancelled System 1. e ( n ) 1 y ( n ) E ( z ) z + 2 U ( z ) 1 Y ( z ) z + 0 . 5 z + 0 . 5 z + 2 Solution of cancelled system: x s ( k + 1) = 0 . 5 x s ( k ) + e ( k ) y s ( k ) = x s ( k ) Iteratively solving, k 1


  1. Unstable Pole-Zero Cancelled System 1. e ( n ) 1 y ( n ) E ( z ) z + 2 U ( z ) 1 Y ( z ) z + 0 . 5 z + 0 . 5 z + 2 Solution of cancelled system: x s ( k + 1) = − 0 . 5 x s ( k ) + e ( k ) y s ( k ) = x s ( k ) Iteratively solving, k − 1 � y s ( k ) = ( − 0 . 5) k x s (0) + ( − 0 . 5) m e ( k − m − 1) m =0 Stable. 1 Digital Control Kannan M. Moudgalya, Autumn 2007

  2. System without Pole-Zero Cancellation 2. E ( z ) z + 2 U ( z ) 1 Y ( z ) z + 0 . 5 z + 2 Can verify for first block: First block: x 1 ( k + 1) = − 0 . 5 x 1 ( k ) + 1 . 5 e ( k ) u ( k ) = x 1 ( k ) + e ( k ) Second block: x 2 ( k + 1) = − 2 x 2 ( k ) + u ( k ) y ( k ) = x 2 ( k ) x 2 ( k + 1) = − 2 x 2 ( k ) + x 1 ( k ) + e ( k ) Substituting, � x 1 ( k + 1) � � − 0 . 5 � � x 1 ( k ) � � 1 . 5 � 0 = + e ( k ) x 2 ( k + 1) 1 − 2 x 2 ( k ) 1 � � x 1 ( k ) � � y ( k ) = 0 1 x 2 ( k ) 2 Digital Control Kannan M. Moudgalya, Autumn 2007

  3. System without Pole-Zero Cancellation 3. E ( z ) z + 2 U ( z ) 1 Y ( z ) z + 0 . 5 z + 2 � x 1 ( k + 1) � � − 0 . 5 � � x 1 ( k ) � � 1 . 5 � 0 = + e ( k ) x 2 ( k + 1) 1 − 2 x 2 ( k ) 1 � � x 1 ( k ) � � 0 1 y ( k ) = x 2 ( k ) k − 1 � = CA k x (0) + CA m be ( k − m − 1) m =0 Can show that this is equal to k − 1 3 ( − 0 . 5) k ( − 2) k � � � x 1 (0) � ( − 0 . 5) m e ( k − m − 1) � + − x 1 (0) + 1 . 5 x 2 (0) 2 m =0 x (0) � = 0 , results in y ( k ) being unbounded! Whence − 2 ? 3 Digital Control Kannan M. Moudgalya, Autumn 2007

  4. Diagonalization 4. A : square matrix λ j : j th eigenvalue x j : j th eigenvector Ax 1 = λ 1 x 1 . . . Ax n = λ n x n Stacking these side by side,       | | | | 0 λ 1 ...  = x 1 · · · x n x 1 · · · x n A      | | | | 0 λ n AS = S Λ Assume the eigenvectors to be independent ⇒ S − 1 exists A = S Λ S − 1 4 Digital Control Kannan M. Moudgalya, Autumn 2007

  5. Diagonalization 5. A = S Λ S − 1 A 2 = S Λ S − 1 S Λ S − 1 = S Λ 2 S − 1 A 3 = S Λ 2 S − 1 S Λ S − 1 = S Λ 3 S − 1 . . . A k = S Λ k S − 1 Easy to evaluate RHS: k λ k     λ 1 0 0 1 Λ k = ... ... =     λ k 0 λ n 0 n This approach is used to arrive at the solution. 5 Digital Control Kannan M. Moudgalya, Autumn 2007

  6. Condition for Cancellation of Poles and Zeros 6. E ( z ) z + 2 U ( z ) 1 Y ( z ) z + 0 . 5 z + 2 Solution of system after cancellation: k − 1 � y s ( k ) = ( − 0 . 5) m x s (0) + ( − 0 . 5) m e ( k − m − 1) m =0 Solution of system if there is no cancellation: k − 1 3 ( − 0 . 5) k ( − 2) k � � � x 1 (0) � ( − 0 . 5) m e ( k − m − 1) � + − x 1 (0) + 1 . 5 x 2 (0) 2 m =0 Two solutions are identical only if • x 1 (0) = 1 . 5 x 2 (0) or • x 1 (0) = x 2 (0) = 0 . 6 Digital Control Kannan M. Moudgalya, Autumn 2007

  7. Aryabhatta’s Identity 7. We need to solve the polynomial equation X ( z ) D ( z ) + Y ( z ) N ( z ) = C ( z ) for X and Y , with D , N and C specified. • Has a solution iff the GCD of D ( z ) and N ( z ) divides C ( z ) • There are infinitely many solutions to Aryabhatta’s identity • Unique solution under special conditions. Suppose D and N are coprime with degrees d D > 0 and d N > 0 . If 0 ≤ d C < d D + d N there is a unique least degree solution given by d X ( z ) < d N ( z ) d Y ( z ) < d D ( z ) 7 Digital Control Kannan M. Moudgalya, Autumn 2007

  8. Algorithm for Aryabhatta’s Identity 8. X ( z ) D ( z ) + Y ( z ) N ( z ) = C ( z ) is the same as � � D ( z ) � � X ( z ) Y ( z ) = C ( z ) N ( z ) Solved by comparing the coefficients of powers of z − 1 . Same as V ( z ) F ( z ) = C ( z ) Can be written as [ V 0 + V 1 z − 1 + · · · + V v z − v ][ F 0 + F 1 z − 1 + · · · + F d F z − d F ] = C 0 + C 1 z − 1 + · · · + C d C z − d C v is an unknown. All V i are also unknowns. 8 Digital Control Kannan M. Moudgalya, Autumn 2007

  9. Algorithm for Aryabhatta’s Identity 9. [ V 0 + V 1 z − 1 + · · · + V v z − v ][ F 0 + F 1 z − 1 + · · · + F d F z − d F ] = C 0 + C 1 z − 1 + · · · + C d C z − d C is the same as   F 0 F 1 · · · F d F 0 · · · 0 0 · · · F d F · · · 0 F 0 F 1 [ V 0 V 1 · · · V v ] .   . .   0 · · · 0 · · · F d F F 0 F 1 = [ C 0 C 1 · · · C d C ] with maximal v . Ensures all combination of products are used. Multiplying, first two equations are obtained as V 0 F 0 = C 0 , V 0 F 1 + V 1 F 0 = C 1 Matrix equation is written as V F = C 9 Digital Control Kannan M. Moudgalya, Autumn 2007

  10. Algorithm for Aryabhatta’s Identity 10. Recall from the previous slide: [ V 0 + V 1 z − 1 + · · · + V v z − v ][ F 0 + F 1 z − 1 + · · · + F d F z − d F ] = C 0 + C 1 z − 1 + · · · + C d C z − d C Can be written as, V F = C IF F is right invertible, the solution is, V = C F − 1 • For this, rows of F have to be linearly independent. • Choose v as the largest integer, satisfying this requirement. • From V , V ( z ) and then X ( z ) , Y ( z ) can be determined, � � because, V = X Y 10 Digital Control Kannan M. Moudgalya, Autumn 2007

  11. Summary: Algorithm for Aryabhatta’s Identity 11. X ( z ) D ( z ) + Y ( z ) N ( z ) = C ( z ) � � D ( z ) � � X ( z ) Y ( z ) = C ( z ) N ( z ) V ( z ) F ( z ) = C ( z ) Can be written as   F 0 F 1 · · · F d F 0 · · · 0 0 F 0 F 1 · · · F d F · · · 0   � � V 0 V 1 · · · V v . .   .   0 · · · 0 · · · F d F F 0 F 1 � � C 0 C 1 · · · C d C = Write this as V F = C , solve for V as V = C F − 1 11 Digital Control Kannan M. Moudgalya, Autumn 2007

  12. Example: Algorithm for Aryabhatta’s Identity 12. Solve for X ( z ) and Y ( z ) satisfying X ( z ) D ( z ) + Y ( z ) N ( z ) = C ( z ) with D ( z ) = 1 − 5 z − 1 + 4 z − 2 N ( z ) = z − 1 + z − 2 C ( z ) = 1 − z − 1 + 0 . 5 z − 2 Construct F : � 1 − 5 z − 1 + 4 z − 2 � � 1 � � − 5 � � 4 � z − 1 + z − 2 F ( z ) = = + z − 1 + z − 2 0 1 1 which is of the form F 0 + F 1 z − 1 + F 2 z − 2 . 12 Digital Control Kannan M. Moudgalya, Autumn 2007

  13. Example: Algorithm for Aryabhatta’s Identity 13. Recall � 1 − 5 z − 1 + 4 z − 2 � � 1 � � − 5 � � 4 � z − 1 + z − 2 F ( z ) = = + z − 1 + z − 2 0 1 1 which is of the form F 0 + F 1 z − 1 + F 2 z − 2 . Explore v = 1 : � 1 − 5 4 � � � F = = F 0 F 1 F 2 0 1 1 Although independent, v is not the largest. Explore v = 2 :   1 − 5 4 0 � F 0 F 1 F 2 0 � 0 1 1 0   F = =   0 F 0 F 1 F 2 0 1 − 5 4   0 0 1 1 These rows are independent. Hence v is still not the maximum. 13 Digital Control Kannan M. Moudgalya, Autumn 2007

  14. Example: Algorithm for Aryabhatta’s Identity 14. Explore the possibility of v = 3 :   1 − 5 4 0 0 0 1 1 0 0     F 0 F 1 F 2 0 0   0 1 − 5 4 0  =   F = 0 F 0 F 1 F 2 0    0 0 1 1 0   0 0 F 0 F 1 F 2   0 0 1 − 5 4   0 0 0 1 1 No longer independent. Remove one row and solve: − 1   1 − 5 4 0 0 0 1 1 0 0   � �   1 − 1 0 . 5 0 0 0 1 − 5 4 0 V =     0 0 1 1 0   0 0 1 − 5 4 14 Digital Control Kannan M. Moudgalya, Autumn 2007

  15. Example: Algorithm for Aryabhatta’s Identity 15. • V is a 1 × 5 vector. • To account for the row removed from F , we add a zero to V . We obtain � � V = 1 3 . 25 | 0 . 75 − 3 | 0 0 where we have separated coefficients of powers of z − 1 with vertical lines. � � � � 1 3 . 25 0 . 75 − 3 • We have V 0 = and V 1 = . • We obtain X ( z ) = 1 + 0 . 75 z − 1 Y ( z ) = 3 . 25 − 3 z − 1 These form the solution to Aryabhatta’s identity 15 Digital Control Kannan M. Moudgalya, Autumn 2007

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend