unpolarized and polarized images
play

Unpolarized and Polarized Images Youwei Lyu 1* , Zhaopeng Cui 2* , Si - PowerPoint PPT Presentation

Reflection Separation using a Pair of Unpolarized and Polarized Images Youwei Lyu 1* , Zhaopeng Cui 2* , Si Li 1 , Marc Pollefeys 2 , Boxin Shi 3,4 1 Beijing University of Posts and Telecommunications, 2 ETH Zrich, 3 Peking University, 4 Peng


  1. Reflection Separation using a Pair of Unpolarized and Polarized Images Youwei Lyu 1* , Zhaopeng Cui 2* , Si Li 1 , Marc Pollefeys 2 , Boxin Shi 3,4 1 Beijing University of Posts and Telecommunications, 2 ETH ZΓΌrich, 3 Peking University, 4 Peng Cheng Laboratory

  2. Reflection Separation

  3. Reflection Separation β€’ An ill-posed problem Captured Reflection Transmission 𝐽 𝐽 𝑠 𝐽 𝑒

  4. Previous Solutions Additional Priors Additional Input β€’ Gradient sparsity priors β€’ Different viewpoints [Levin et al. 07] [Wan et al. 18] [Gai et al. 12] [Guo et al. 14] [Xue et al. 15] β€’ Relative smoothness priors β€’ Different polarization angles [Li et al. 14] [Arvanitopoulos et al. 17] [Schechner et al. 00] [Wieschollek et al. 18] [Wieschollek et al. 18] [Wan et al. 18]

  5. Previous Solutions Additional Priors Additional Input β€’ Gradient sparsity priors β€’ Different viewpoints [Levin et al. 07] [Wan et al. 18] [Gai et al. 12] [Guo et al. 14] [Xue et al. 15] β€’ Relative Smoothness priors β€’ Different polarization angles Violate in real-world Complicated [Li et al. 14] [Arvanitopoulos et al. 17] scenarios capturing operations [Schechner et al. 00] [Kong et al. 14] [Wieschollek et al. 18] [Wan et al. 18]

  6. We design an end-to-end neural network which takes a pair of (un)polarized images for reflection separation based on a new physical image formation model.

  7. New Setup: (un)polarized images Without polarizer Camera Reflection in front of the camera 𝐽 𝑠 𝑦 𝐽 π‘£π‘œπ‘žπ‘π‘š 𝑦 𝐽 π‘£π‘œπ‘žπ‘π‘š 𝑦 = 𝐽 𝑠 𝑦 β‹… 𝜊(𝑦) + 𝐽 𝑒 𝑦 β‹… 2 βˆ’ 𝜊(𝑦) πœ„(𝑦) 2 2 Glass 𝐽 𝑒 𝑦 Transmission 𝐽 π‘£π‘œπ‘žπ‘π‘š 𝐽 𝑠 𝐽 𝑒

  8. New Setup: (un)polarized images Without polarizer Camera Reflection in front of the camera 𝐽 𝑠 𝑦 𝐽 π‘£π‘œπ‘žπ‘π‘š 𝑦 𝐽 π‘£π‘œπ‘žπ‘π‘š 𝑦 = 𝐽 𝑠 𝑦 β‹… 𝜊(𝑦) + 𝐽 𝑒 𝑦 β‹… 2 βˆ’ 𝜊(𝑦) πœ„(𝑦) 2 2 𝜊 𝑦 = 𝑔 1 πœ„(𝑦) Glass 𝐽 𝑒 𝑦 𝜊 Transmission πœ„(𝑦) is the angle of incidence. πœ„

  9. New Setup: (un)polarized images With polarizer Camera Reflection in front of the camera 𝐽 𝑠 𝑦 𝐽 π‘žπ‘π‘š 𝑦 = 𝐽 𝑠 𝑦 β‹… πœ‚(𝑦) + 𝐽 𝑒 𝑦 β‹… 1 βˆ’ πœ‚(𝑦) 𝐽 π‘žπ‘π‘š 𝑦 πœ„(𝑦) 2 2 Glass 𝜚 βŠ₯ (𝑦) 𝐽 𝑒 𝑦 𝜚 Transmission Polarizer 𝐽 π‘žπ‘π‘š 𝐽 𝑠 𝐽 𝑒

  10. New Setup: (un)polarized images With polarizer Camera Reflection in front of the camera 𝐽 𝑠 𝑦 𝐽 π‘žπ‘π‘š 𝑦 = 𝐽 𝑠 𝑦 β‹… πœ‚(𝑦) + 𝐽 𝑒 𝑦 β‹… 1 βˆ’ πœ‚(𝑦) 𝐽 π‘žπ‘π‘š 𝑦 πœ„(𝑦) 2 2 πœ‚ 𝑦 = 𝑔 2 πœ„ 𝑦 , 𝜚 βŠ₯ (𝑦) Glass 𝜚 βŠ₯ (𝑦) 𝐽 𝑒 𝑦 πœ‚ 𝜚 Transmission Polarizer 𝜚 βŠ₯ βˆ’ 𝜚 πœ„ 𝜚 βŠ₯ (𝑦) is the orientation of the polarizer for the best transmission of the component perpendicular to the plane of incidence (PoI).

  11. New Setup: (un)polarized images Without polarizer: 𝐽 π‘£π‘œπ‘žπ‘π‘š 𝑦 = 𝐽 𝑠 𝑦 β‹… 𝜊(𝑦) + 𝐽 𝑒 𝑦 β‹… 2 βˆ’ 𝜊(𝑦) 𝐽 π‘£π‘œπ‘žπ‘π‘š 𝑦 , 𝐽 π‘žπ‘π‘š 𝑦 2 2 β‡’ 𝐽 𝑒 𝑦 , 𝐽 𝑠 𝑦 With polarizer: πœ„(𝑦), 𝜚 βŠ₯ (𝑦) 𝐽 π‘žπ‘π‘š 𝑦 = 𝐽 𝑠 𝑦 β‹… πœ‚(𝑦) + 𝐽 𝑒 𝑦 β‹… 1 βˆ’ πœ‚(𝑦) 2 2

  12. How to compute πœ„ 𝑦 and 𝜚 βŠ₯ 𝑦 ?

  13. Physical Image Formation Model πœ„ 𝑦 = arcos 𝐨 π‘•π‘šπ‘π‘‘π‘‘ β‹… ΰ΄₯ 𝐘

  14. Physical Image Formation Model πœ„ 𝑦 = arcos 𝐨 π‘•π‘šπ‘π‘‘π‘‘ β‹… ΰ΄₯ 𝐘 𝑧 𝑄𝑝𝐽 𝜚 βŠ₯ 𝑦 = arctan 𝑦 𝑄𝑝𝐽 where 𝑦 𝑄𝑝𝐽 , 𝑧 𝑄𝑝𝐽 , 𝑨 𝑄𝑝𝐽 T = 𝐨 π‘•π‘šπ‘π‘‘π‘‘ Γ— ΰ΄₯ 𝐘

  15. Physical Image Formation Model 𝑦 𝑦 𝛾 𝐨 π‘•π‘šπ‘π‘‘π‘‘ 𝑨 𝛽 𝑧 𝑧 𝑃 𝑦 𝑧 𝛽, 𝛾 β‡’ 𝐨 π‘•π‘šπ‘π‘‘π‘‘

  16. Physical Image Formation Model Without polarizer: 𝐽 π‘£π‘œπ‘žπ‘π‘š 𝑦 = 𝐽 𝑠 𝑦 β‹… 𝜊(𝑦) + 𝐽 𝑒 𝑦 β‹… 2 βˆ’ 𝜊(𝑦) 𝐽 π‘£π‘œπ‘žπ‘π‘š 𝑦 , 𝐽 π‘žπ‘π‘š 𝑦 2 2 β‡’ 𝐽 𝑒 𝑦 , 𝐽 𝑠 𝑦 With polarizer: πœ„(𝑦), 𝜚 βŠ₯ (𝑦) 𝐽 π‘žπ‘π‘š 𝑦 = 𝐽 𝑠 𝑦 β‹… πœ‚(𝑦) + 𝐽 𝑒 𝑦 β‹… 1 βˆ’ πœ‚(𝑦) 2 2 𝐽 π‘£π‘œπ‘žπ‘π‘š 𝑦 , 𝐽 π‘žπ‘π‘š 𝑦 β‡’ 𝐽 𝑒 𝑦 , 𝐽 𝑠 𝑦 𝛽, 𝛾

  17. Reflection Separation Network

  18. Reflection Separation Network β€’ Semireflector orientation estimation module

  19. Reflection Separation Network β€’ Polarization-guided separation module πœ„ 𝑦 = arcos 𝐨 π‘•π‘šπ‘π‘‘π‘‘ β‹… ΰ΄₯ 𝐘 𝑧 𝑄𝑝𝐽 𝜚 βŠ₯ 𝑦 = arctan 𝑦 𝑄𝑝𝐽 𝑦 𝑄𝑝𝐽 , 𝑧 𝑄𝑝𝐽 , 𝑨 𝑄𝑝𝐽 T = 𝐨 π‘•π‘šπ‘π‘‘π‘‘ Γ— ΰ΄₯ 𝐘 𝐽 π‘£π‘œπ‘žπ‘π‘š 𝑦 , 𝐽 π‘žπ‘π‘š 𝑦 β‡’ መ 𝐽 𝑒 𝑦 , መ 𝐽 𝑠 𝑦 πœ„ 𝑦 , 𝜚 βŠ₯ 𝑦

  20. Reflection Separation Network β€’ Separated layers refinement module 𝐽 𝑒 𝑦 , መ መ 𝐽 𝑠 𝑦 β‡’ 𝐽 𝑒 𝑦 , 𝐽 𝑠 (𝑦)

  21. Evaluation on Synthetic Data Ours- Ours- Ours- Ours- ReflectNet[1]- Ours Initial Finetuned 2% noise 8% noise 16% noise SSIM 0.9708 0.8324 0.9627 0.9691 0.9668 0.9619 Transmission PSNR 28.23 21.61 27.52 28.08 27.31 27.17 SSIM 0.8953 0.6253 0.8303 0.8785 0.8418 0.8022 Reflection PSNR 20.92 13.90 18.50 20.53 19.18 18.26 [1] P. Wieschollek, O. Gallo, J. Gu, and J. Kautz. Separating reflection and transmission images in the wild. In Proc. ECCV, 2018.

  22. Evaluation on Synthetic Data [1] P. Wieschollek, O. Gallo, J. Gu, and J. Kautz. Separating reflection and transmission images in the wild. ECCV, 2018. [2] R. Wan, B. Shi, L.-Y. Duan, A.-H. Tan, and A. C. Kot. CRRN: Multi-scale guided concurrent reflection removal network. CVPR, 2018 [3] X. Zhang, R. Ng, and Q. Chen. Single image reflection separation with perceptual losses. CVPR, 2018.

  23. Evaluation on Synthetic Data [1] P. Wieschollek, O. Gallo, J. Gu, and J. Kautz. Separating reflection and transmission images in the wild. In Proc. ECCV, 2018. [2] R. Wan, B. Shi, L.-Y. Duan, A.-H. Tan, and A. C. Kot. Crrn: Multi-scale guided concurrent reflection removal network. In Proc. CVPR, 2018 [3] X. Zhang, R. Ng, and Q. Chen. Single image reflection separation with perceptual losses. In Proc. CVPR, 2018.

  24. Evaluation on Real-World Data [1] P. Wieschollek, O. Gallo, J. Gu, and J. Kautz. Separating reflection and transmission images in the wild. In Proc. ECCV, 2018.

  25. Conclusion β€’ A simple while effective setup for reflection separation using a pair of (un)polarized images β€’ A well-posed physical image formation model β€’ An end-to-end deep neural network designed according to the physical model

  26. Thank you! Poster #83 Thursday, December 12th, 05:00 - 07:00 PM

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend