simultaneous global analysis of polarized and unpolarized
play

Simultaneous Global Analysis of Polarized and Unpolarized PDFs and - PowerPoint PPT Presentation

Simultaneous Global Analysis of Polarized and Unpolarized PDFs and Fragmentation Functions Nobuo Sato Old Dominion University CTEQ Workshop Parton Distributions as a Bridge from Low to High Energies Jefferson Lab, 2018 1 / 32 Motivations 2


  1. Simultaneous Global Analysis of Polarized and Unpolarized PDFs and Fragmentation Functions Nobuo Sato Old Dominion University CTEQ Workshop Parton Distributions as a Bridge from Low to High Energies Jefferson Lab, 2018 1 / 32

  2. Motivations 2 / 32

  3. Mapping the parton strucure of the nucleon Challenges: + Quantitative limits of x, Q 2 , z, ... where factorization theorems are applicable + Universality of non perturbative objects → predictive power + QCD analysis framework that extracts simultaneously all non-perturbative objects (including TMDs) + Framework with the same theory assumptions 3 / 32

  4. Mapping the parton strucure of the nucleon Need for a reliable Bayesian likelihood analysis: + Retire maximum likelihood methods that can lead to biased results (CT, CJ, MMHT, DSSV, ...) + Embrace likelihood analysis via MC methods (JAM, NNPDF) + Faithful representation of uncertainties consistent with Bayes’ theorem 4 / 32

  5. Bayesian likelihood analysis fit Inclusion of modern data analysis techniques sampler priors fit posteriors fit + Bayesian theorm P ( f | data) = L (data , f ) π ( f ) original data pseudo prior data + Estimation of expectation values and variances: training validation data data as initial o data resampling fit guess o partition and cross validation parameters from o iterative Monte Carlo (IMC) validation minimization steps o nested sampling posterior 5 / 32

  6. History 6 / 32

  7. JAM15: ∆ PDFs NS, Melnitchouk, Kuhn, Ethier, Accardi (PRD) 0 . 5 0 . 15 JAM15 x ∆ u + xD u Inclusion of all JLab 6 GeV 0 . 4 0 . 10 no JLab 0 . 3 0 . 05 data → 0 . 1 < x < 0 . 7 0 . 2 0 . 00 0 . 1 − 0 . 05 10 − 2 0 . 1 0 . 3 0 . 5 0 . 7 10 − 2 0 . 1 0 . 3 0 . 5 0 . 7 0 . 15 xD d − 0 . 05 0 . 10 Non vanishing twist 3 quark 0 . 05 − 0 . 10 distributions 0 . 00 x ∆ d + − 0 . 05 − 0 . 15 − 0 . 10 10 − 2 10 − 2 0 . 1 0 . 3 0 . 5 0 . 7 0 . 1 0 . 3 0 . 5 0 . 7 0 . 04 0 . 010 0 . 02 0 . 005 Residual twist 4 0 . 00 0 . 000 − 0 . 005 contributions consistent with − 0 . 02 x ∆ s + xH p − 0 . 010 − 0 . 04 zero 10 − 2 10 − 2 0 . 1 0 . 3 0 . 5 0 . 7 0 . 06 0 . 1 0 . 3 0 . 5 0 . 7 0 . 2 xH n x ∆ g 0 . 04 0 . 02 0 . 1 0 . 00 0 . 0 − 0 . 02 − 0 . 1 − 0 . 04 10 − 2 10 − 2 0 . 1 0 . 3 0 . 5 0 . 7 x 0 . 1 0 . 3 0 . 5 0 . 7 x 7 / 32

  8. JAM15: d 2 matrix element NS, Melnitchouk, Kuhn, Ethier, Accardi (PRD) 0 . 020 JAM15 p E155x ( a ) ( b ) 0 . 015 Existing measurements of d 2 JAM15 n RSS lattice E01 – 012 are in the resonance region 0 . 010 d 2 E06 – 014 → quark-hadron duality JAM15 0 . 005 0 . 000 − 0 . 005 1 2 3 4 5 1 2 3 4 5 Q 2 (GeV 2 ) Q 2 (GeV 2 ) � 1 dxx 2 � � d 2 ( Q 2 ) ≡ 2 g τ 3 1 ( x, Q 2 ) + 3 g τ 3 2 ( x, Q 2 ) 0 8 / 32

  9. JAM15: ∆ PDFs NS, Melnitchouk, Kuhn, Ethier, Accardi (PRD) 0 . 5 JAM15 0 . 02 x ∆ u + 0 . 4 JAM13 DSSV09 0 . 00 0 . 3 SU2, SU3 constraints imposed NNPDF14 BB10 0 . 2 − 0 . 02 AAC09 x ∆ s + LSS10 0 . 1 − 0 . 04 What determines the sign of ∆ s + ? 10 − 3 10 − 2 10 − 3 10 − 2 0 . 1 0 . 3 0 . 5 0 . 7 0 . 1 0 . 3 0 . 5 0 . 7 − 0 . 02 0 . 2 − 0 . 06 0 . 1 − 0 . 10 0 . 0 x ∆ d + x ∆ g − 0 . 14 − 0 . 1 10 − 3 10 − 2 10 − 3 10 − 2 0 . 1 0 . 3 0 . 5 0 . 7 0 . 1 0 . 3 0 . 5 0 . 7 x x 9 / 32

  10. JAM16: FFs NS, Ethier, Melnitchouk, Hirai, Kumano, Accardi (PRD) 1 . 4 1 . 4 1 . 4 u + d + s + π and K Belle, BaBar up 1 . 0 π + 1 . 0 π + 1 . 0 zD ( z ) to LEP energies π + 0 . 6 0 . 6 0 . 6 K + K + K + 0 . 2 0 . 2 0 . 2 JAM and DSS D K s + 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8 0 . 2 0 . 4 0 . 6 0 . 8 consistent 1 . 4 1 . 4 1 . 4 c + b + g 1 . 0 π + 1 . 0 π + 1 . 0 π + zD ( z ) 0 . 6 0 . 6 0 . 6 K + K + 0 . 2 0 . 2 0 . 2 K + 0 . 8 z 0 . 8 z 0 . 8 z 0 . 2 0 . 4 0 . 6 0 . 2 0 . 4 0 . 6 0 . 2 0 . 4 0 . 6 10 / 32

  11. JAM17: ∆ PDF +FF Ethier, NS, Melnitchouk (PRL) x ∆ u + x ∆ d + 0 0 . 4 No SU(3) constraints 0 . 3 − 0 . 05 0 . 2 − 0 . 10 JAM17 0 . 1 JAM15 Sea polarization consistent with zero − 0 . 15 0 0 0 . 2 0 . 4 0 . 6 0 . 8 1 0 0 . 2 0 . 4 0 . 6 0 . 8 1 0 . 04 x (∆¯ u + ∆ ¯ 0 . 04 d ) 0 . 02 0 . 02 Precision of ∆ SIDIS is not sufficient to 0 0 determine sea polarization − 0 . 02 − 0 . 02 − 0 . 04 − 0 . 04 u − ∆ ¯ DSSV09 x (∆¯ d ) 10 − 3 10 − 2 10 − 1 10 − 3 10 − 2 10 − 1 0 . 4 0 . 8 0 . 4 0 . 8 0 . 04 x ∆ s + 0 . 1 x ∆ s − 0 . 02 0 . 05 0 0 − 0 . 02 − 0 . 05 − 0 . 04 − 0 . 1 JAM17 + SU(3) 0 . 8 x 0 . 8 x 10 − 3 10 − 2 10 − 1 10 − 3 10 − 2 10 − 1 0 . 4 0 . 4 11 / 32

  12. JAM17: ∆ PDF +FF Ethier, NS, Melnitchouk (PRL) g A a 8 Normalized yield SU(2) SU(3) Flat priors that gives flat a 8 in order to have an unbias 1 . 1 1 . 2 1 . 3 0 0 . 5 1 extraction of a 8 Normalized yield ∆Σ u ∆ ¯ ∆¯ − d Data prefers smaller values for a 8 → 25% larger total spin 0 . 2 0 . 3 0 . 4 0 . 5 − 0 . 2 0 0 . 2 carried by quarks. obs. JAM15 JAM17 a 3 which is in a good agreement with values from β g A 1 . 269(3) 1 . 24(4) decays within 2% . g 8 0 . 586(31) 0 . 46(21) ∆Σ 0 . 28(4) 0 . 36(9) u − ∆ ¯ ∆¯ d 0 0.05(8) 12 / 32

  13. Present 13 / 32

  14. JAM18: Universal analysis (preliminary) Andres, Ethier, Melnitchouk, NS, Rogers Goals + Extract PDFs, ∆ PDFs and FFs simultaneously o DIS, SIDIS ( π, K ) , DY o ∆ DIS, ∆ SIDIS ( π, K ) o e + e − ( π, K ) + Consistent extraction of s and ∆ s Likelihood analysis (first steps) + Use maximum likelihood to find a candidate solution + Use resampling to check for stability and estimate uncertainties + 80 shape parameters and 91 data normalization parameters: 171 dimensional space 14 / 32

  15. JAM18: PDFs (preliminary) ¯ d ¯ u 0 . 6 0 . 4 xf ( x ) 0 . 4 g/ 10 0 . 2 0 . 2 u − d − SIDIS SIDIS 0 . 0 0 . 0 10 − 3 10 − 2 10 − 1 x 10 − 3 10 − 2 10 − 1 x 0 . 3 s ¯ s ¯ d − ¯ u constrained mainly by DY 0 . 2 SIDIS is in agreement with DY’s ¯ d − ¯ u s − ¯ s � = 0 0 . 1 Q 2 = 10 GeV 2 SIDIS 0 . 0 10 − 3 10 − 2 10 − 1 x 15 / 32

  16. JAM18: PDFs (preliminary) ¯ d u ¯ 0 . 6 0 . 4 xf ( x ) 0 . 4 g 0 . 2 0 . 2 u − d − SIDIS SIDIS 0 . 0 0 . 0 10 − 3 10 − 2 10 − 1 x 10 − 3 10 − 2 10 − 1 x 0 . 3 s s ¯ Comparison with other groups 0 . 2 + dashed: MMHT14 + dashed-dotted: CT14 0 . 1 + dotted: CJ15 + dot-dot-dash: ABMP16 SIDIS 0 . 0 Big differences for s, ¯ s distributions 10 − 3 10 − 2 10 − 1 x 16 / 32

  17. JAM18: upolarized sea (preliminary) 1 . 0 JAM18 1 . 6 d ) u + ¯ CT14 0 . 8 MMHT14 1 . 4 CJ15 s ) / (¯ 0 . 6 u d/ ¯ ABMP16 ¯ 1 . 2 0 . 4 ( s + ¯ 1 . 0 0 . 2 SIDIS SIDIS 0 . 8 0 . 0 10 − 2 10 − 1 x 10 − 2 10 − 1 x 0 . 02 For CJ and CT, s = ¯ s s ) x ( s − ¯ MMHT uses neutrino DIS 0 . 00 SIDIS favors a strange suppression and a larger s , ¯ s asymmetry − 0 . 02 SIDIS 10 − 2 10 − 1 x 17 / 32

  18. JAM18: ∆ PDFs (preliminary) 0 . 6 0 . 002 ∆ ¯ ∆ g d ∆ u + ∆¯ u 0 . 4 0 . 001 x ∆ f ( x ) ∆ d + 0 . 2 0 . 000 0 . 0 − 0 . 001 ∆SIDIS ∆SIDIS − 0 . 2 − 0 . 002 10 − 3 10 − 2 10 − 1 x 10 − 3 10 − 2 10 − 1 x 0 . 002 ∆ s ∆¯ s Recall no SU2,SU3 imposed 0 . 001 u, ∆ ¯ ∆ s, ∆¯ d are much better 0 . 000 known than ∆¯ s − 0 . 001 It means, most of the uncertainty on ∆ s + is from ∆¯ s ∆SIDIS − 0 . 002 10 − 3 10 − 2 10 − 1 x 18 / 32

  19. JAM18: IMC runs (preliminary) 2 . 5 0 . 5 0 . 5 2 . 0 0 . 4 0 . 4 xf ( x ) 1 . 5 0 . 3 0 . 3 ← flat priors 1 . 0 0 . 2 0 . 2 0 . 5 0 . 1 0 . 1 0 . 0 0 . 0 0 . 0 10 − 2 10 − 1 x 10 − 2 10 − 1 x 10 − 2 10 − 1 x 2 . 5 0 . 5 0 . 5 2 . 0 0 . 4 0 . 4 xf ( x ) 1 . 5 0 . 3 0 . 3 ← DIS no HERA 1 . 0 0 . 2 0 . 2 0 . 5 0 . 1 0 . 1 0 . 0 0 . 0 0 . 0 10 − 2 10 − 1 x 10 − 2 10 − 1 x 10 − 2 10 − 1 x 2 . 5 0 . 5 0 . 5 2 . 0 0 . 4 0 . 4 xf ( x ) 1 . 5 0 . 3 0 . 3 ← DIS with HERA 1 . 0 0 . 2 0 . 2 0 . 5 0 . 1 0 . 1 0 . 0 0 . 0 0 . 0 10 − 2 10 − 1 x 10 − 2 10 − 1 x 10 − 2 10 − 1 x 2 . 5 0 . 5 0 . 5 2 . 0 g 0 . 4 0 . 4 xf ( x ) ¯ 1 . 5 0 . 3 0 . 3 d s ¯ s u v 1 . 0 0 . 2 0 . 2 ← DIS with HERA + DY d v 0 . 5 0 . 1 u ¯ 0 . 1 0 . 0 0 . 0 0 . 0 10 − 2 10 − 1 x 10 − 2 10 − 1 x 10 − 2 10 − 1 x 19 / 32

  20. ... and beyond 20 / 32

  21. SIDIS+Lattice analysis of nucleon tensor charge Lin, Melnitchouk, Prokudin, NS, Shows (PRL) 4 h u zH ⊥ (1) 4 π + 0 . 4 2 1 1 1(fav) 0 2 0 0 . 2 0 0 - 4 - 2 - 2 π − 0 – 1 HERMES p - 4 h d zH ⊥ (1) - 8 - 4 – 0 . 2 (%) – 2 1 x z 2 0 . 2 0 . 4 0 . 6 1(unf) 2 4 – 0 . 4 A sin( φ h + φ s ) – 3 0 - 0 - 0 x z 0 0 0 . 2 0 . 4 0 . 6 0 . 2 0 . 4 0 . 6 δd SIDIS normalized yield (a) SIDIS+lattice (b) - 4 6 UT - 2 SIDIS - 2 - 8 COMPASS p – 0 . 4 2 0 . 2 0 . 4 0 . 6 2 x - 2 z 4 0 0 – 0 . 8 0 2 - 2 SIDIS+lattice - 2 π + - 4 π − – 1 . 2 0 - 2 - 4 COMPASS d 0 0 . 2 0 . 4 0 0 . 5 1 g T δu - 6 0 0 . 1 0 . 2 0 . 2 0 . 4 0 . 6 0 . 2 0 . 4 0 . 6 P h ⊥ x z Extraction of transversity and Collins FFs from SIDIS A UT +Lattice g T In the absence of Lattice, SIDIS has no significant constraints on g T 21 / 32

  22. First global Monte Carlo analysis of pion PDFs Barry, NS, Melnitchouk, Ji (PRL) 22 / 32

  23. First global Monte Carlo analysis of pion PDFs Barry, NS, Melnitchouk, Ji (PRL) How to probe pion structure + π + A → l ¯ l + X (Drell-Yan) + π + A → γ + X (prompt photons) + e + p → e ′ + n + X (SIDIS) → small x π gluon PDF π p n 23 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend