the fyodorov bouchaud formula and liouville conformal
play

The Fyodorov-Bouchaud formula and Liouville conformal field theory - PowerPoint PPT Presentation

The Fyodorov-Bouchaud formula and Liouville conformal field theory Guillaume Remy Ecole Normale Sup erieure June 22, 2018 Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 1 / 28 Introduction Two fields of physics:


  1. The Fyodorov-Bouchaud formula and Liouville conformal field theory Guillaume Remy ´ Ecole Normale Sup´ erieure June 22, 2018 Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 1 / 28

  2. Introduction Two fields of physics: Log-correlated fields, Gaussian multiplicative chaos (GMC) Liouville conformal field theory (LCFT) DKRV 2014: link between GMC and LCFT Why is this link interesting ? GMC theory ⇒ Rigorous definition of Liouville CFT CFT techniques ⇒ Exact formulas on GMC DOZZ formula / Fyodorov-Bouchaud formula Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 2 / 28

  3. Gaussian Free Field (GFF) Gaussian free field X on the unit circle ∂ D 1 E [ X ( e i θ ) X ( e i θ ′ )] = 2 ln | e i θ − e i θ ′ | X ( e i θ ) has an infinite variance X lives in the space of distributions Cut-off approximation X ǫ Ex: X ǫ = ρ ǫ ∗ X , ρ ǫ = 1 ǫ ρ ( · ǫ ) , with smooth ρ . Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 3 / 28

  4. Gaussian multiplicative chaos (GMC) γ 2 X d θ For γ ∈ (0 , 2), define on ∂ D the measure e γ 2 X ǫ d θ Cut-off approximation e γ 2 γ 8 E [ X 2 2 X ǫ ] = e ǫ ] E [ e 2 X ǫ − γ 2 γ 8 E [ X 2 ǫ ] d θ Renormalized measure: e Proposition The following limit holds in probability, for any continuous test function f , ∀ γ ∈ (0 , 2): � 2 π � 2 π 2 X ǫ ( e i θ ) − γ 2 γ 2 X ( e i θ ) f ( θ ) d θ = lim γ 8 E [ X 2 ǫ ( e i θ )] f ( θ ) d θ e e ǫ → 0 0 0 Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 4 / 28

  5. Moments of the GMC We introduce: � 2 π ∀ γ ∈ (0 , 2) , Y γ := 1 γ 2 X ( e i θ ) d θ e 2 π 0 Existence of the moments of Y γ : ⇒ p < 4 E [ Y p γ ] < + ∞ ⇐ γ 2 . Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 5 / 28

  6. The Fyodorov-Bouchaud formula Theorem (R. 2017) Let γ ∈ (0 , 2) and p ∈ ( −∞ , 4 γ 2 ), then: γ ] = Γ(1 − p γ 2 4 ) E [ Y p Γ(1 − γ 2 4 ) p We also have a density for Y γ , − 4 f Y γ ( y ) = 4 β γ 2 1 [0 , ∞ [ ( y ) , γ 2 ( β y ) − 4 γ 2 − 1 e − ( β y ) β Exp(1) − γ 2 where β = Γ(1 − γ 2 law = 1 4 . 4 ). Equivalently Y γ Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 6 / 28

  7. Application 1: maximum of the GFF Derivative martingale: work by Duplantier, Rhodes, Sheffield, Vargas. γ → 2 in our GMC measure (Aru, Powell, Sep´ ulveda): 1 Y ′ := lim 2 − γ Y γ . γ → 2 ln Y ′ has the following density: f ln Y ′ ( y ) = e − y e − e − y ln Y ′ ∼ G where G follows a standard Gumbel law Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 7 / 28

  8. Application 1: maximum of the GFF Following an impressive series of works (2016): Theorem (Ding, Madaule, Roy, Zeitouni) For a reasonable cut-off X ǫ of the GFF: θ ∈ [0 , 2 π ] X ǫ ( e i θ ) − 2 ln 1 ǫ + 3 2 ln ln 1 ǫ → 0 G + ln Y ′ + C max ǫ → where G is a standard Gumbel law and C ∈ R . Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 8 / 28

  9. Application 1: maximum of the GFF The Fyodorov-Bouchaud formula implies: Corollary (R 2017) For a reasonable cut-off X ǫ of the GFF: θ ∈ [0 , 2 π ] X ǫ ( e i θ ) − 2 ln 1 ǫ + 3 2 ln ln 1 max ǫ → ǫ → 0 G 1 + G 2 + C where G 1 , G 2 are independent Gumbel laws and C ∈ R . Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 9 / 28

  10. Application 2: random unitary matrices U N := N × N random unitary matrix Its eigenvalues ( e i θ 1 , . . . , e i θ n ) follow the distribution: n 1 d θ k | e i θ k − e i θ j | 2 � � n ! 2 π k < j k =1 Let p N ( θ ) = det(1 − e − i θ U N ) = � N k =1 (1 − e i ( θ k − θ ) ) √ Webb (2015): ∀ α ∈ ( − 1 2 , 2), | p N ( θ ) | α α 2 X ( e i θ ) d θ E [ | p N ( θ ) | α ] d θ → N →∞ e Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 10 / 28

  11. Application 2: random unitary matrices Conjecture by Fyodorov, Hiary, Keating (2012): θ ∈ [0 , 2 π ] ln | p N ( θ ) | − ln N + 3 max 4 ln ln N N →∞ G 1 + G 2 + C . → Chhaibi, Madaule, Najnudel (2016), tightness of: θ ∈ [0 , 2 π ] ln | p N ( θ ) | − ln N + 3 max 4 ln ln N . With our result it is sufficient to show: θ ∈ [0 , 2 π ] ln | p N ( θ ) | − ln N + 3 N →∞ G 1 + ln Y ′ + C . max 4 ln ln N → Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 11 / 28

  12. Integer moments of the GMC The computation of Fyodorov and Bouchaud Fyodorov Y.V., Bouchaud J.P.: Freezing and extreme value statistics in a Random Energy Model with logarithmically correlated potential, Journal of Physics A: Mathematical and Theoretical , Volume 41, Number 37, (2008). Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 12 / 28

  13. Integer moments of the GMC For n ∈ N ∗ , n < 4 γ 2 : � 2 π E [( 1 2 X ǫ ( e i θ ) − γ 2 γ 8 E [ X ǫ ( e i θ ) 2 ] d θ ) n ] e 2 π 0 n 1 � 2 X ǫ ( e i θ i ) − γ 2 γ 8 E [ X ǫ ( e i θ i ) 2 ] ] d θ 1 . . . d θ n � = [0 , 2 π ] n E [ e (2 π ) n i =1 1 � γ 2 i < j E [ X ǫ ( e i θ i ) X ǫ ( e i θ j )] d θ 1 . . . d θ n � = [0 , 2 π ] n e 4 (2 π ) n Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 13 / 28

  14. Integer moments of the GMC For n ∈ N ∗ , n < 4 γ 2 : 1 � γ 2 i < j E [ X ( e i θ i ) X ( e i θ j )] d θ 1 . . . d θ n E [ Y n � γ ] = [0 , 2 π ] n e 4 (2 π ) n 1 1 � � = d θ 1 . . . d θ n (2 π ) n γ 2 | e i θ i − e i θ j | [0 , 2 π ] n 2 i < j = Γ(1 − n γ 2 4 ) Γ(1 − γ 2 4 ) n Question: can we replace n ∈ N ∗ by a real p < 4 γ 2 ? Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 14 / 28

  15. Proof of the Fyodorov-Bouchaud formula Framework of conformal field theory Belavin A.A., Polyakov A.M., Zamolodchikov A.B.: Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear. Physics. , B241, 333-380, (1984). Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 15 / 28

  16. The BPZ differential equation We introduce the following observable for t ∈ [0 , 1]: � 2 π γ 2 γ 2 X ( e i θ ) d θ ) p ] | t − e i θ | 2 e G ( γ, p , t ) = E [( 0 BPZ equation: ( t (1 − t 2 ) ∂ 2 ∂ t 2 +( t 2 − 1) ∂ ∂ t +2( C − ( A + B +1) t 2 ) ∂ ∂ t − 4 ABt ) G ( γ, p , t ) = 0 where: A = − γ 2 p 4 , B = − γ 2 4 , C = γ 2 4 (1 − p ) + 1 . Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 16 / 28

  17. Solutions of the BPZ equation BPZ equation in t → hypergeometric equation in t 2 Two bases of solutions: γ 2 G ( γ, p , t ) = C 1 F 1 ( t 2 ) + C 2 t 2 ( p − 1) F 2 ( t 2 ) F 1 (1 − t 2 ) + B 2 (1 − t 2 ) 1+ γ 2 G ( γ, p , t ) = B 1 ˜ 2 ˜ F 2 (1 − t 2 ) where: C 1 , C 2 , B 1 , B 2 ∈ R F 1 , F 2 , ˜ F 1 , ˜ F 2 := hypergeometric series depending on γ and p . Change of basis: ( C 1 , C 2 ) ↔ ( B 1 , B 2 ). Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 17 / 28

  18. The shift relation By direct asymptotic expansion: C 1 = (2 π ) p E [ Y p γ ] C 2 = 0 � 2 π γ 2 γ 2 X ( θ ) d θ ) p ] | 1 − e i θ | 2 e B 1 = E [( 0 B 2 = (2 π ) p p Γ( − γ 2 2 − 1) 4 ) E [ Y p − 1 ] Γ( − γ 2 γ The change of basis implies: Γ(1 − p γ 2 4 ) E [ Y p − 1 E [ Y p γ ] = ] . γ Γ(1 − γ 2 4 )Γ(1 − ( p − 1) γ 2 4 ) Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 18 / 28

  19. Negative moments of GMC The shift relation gives all the negative moments: γ ] = Γ(1 + n γ 2 4 )Γ(1 − γ 2 E [ Y − n 4 ) n , ∀ n ∈ N . We check: ∞ λ n n ! Γ(1 + n γ 2 4 )Γ(1 − γ 2 4 ) n < + ∞ � ∀ λ ∈ R , n =0 Negative moments ⇒ determine the law of Y γ ! Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 19 / 28

  20. Explicit probability densities Probability densities for Y − 1 and Y γ γ 4 4 γ 2 1 [0 , ∞ [ ( y ) βγ 2 ( y 4 γ 2 − 1 e − ( y β ) f 1 Y γ ( y ) = β ) − 4 γ 2 1 [0 , ∞ [ ( y ) f Y γ ( y ) = 4 β γ 2 ( β y ) − 4 γ 2 − 1 e − ( β y ) where γ ∈ (0 , 2) and β = Γ(1 − γ 2 4 ). Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 20 / 28

  21. What is Liouville field theory? Path integral formalism Σ = { X : D → R } D | ∂ X | 2 dx 2 + γ 1 � � 2 X ds For X ∈ Σ, energy of X := ∂ D e 4 π Random field φ L : � γ F ( X ) e − 1 D | ∂ X | 2 dx 2 − 2 X ds DX � � ∂ D e E [ F ( φ L )] = 4 π Σ with γ ∈ (0 , 2). ⇒ φ L is the Liouville field Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 21 / 28

  22. Correlations of Liouville theory Correlation function of z i ∈ D , α i ∈ R : N N � γ 2 X ds e α i X ( z i ) e − 1 D | ∂ X | 2 dx 2 − � � � � e α i φ L ( z i ) � D = ∂ D e � DX 4 π X : D �→ R i =1 i =1 Expressed in terms of Gaussian multiplicative chaos � e αφ L (0) � D = ˜ C 1 E [ Y p − 1 ] γ 2 (1 − t 2 ) − γ 2 � e αφ L (0) e − γ αγ 2 φ L ( t ) � D = ˜ 8 G ( γ, p , t ) C 2 t with p = 2 − 2 α − 4 γ 2 . Guillaume Remy (ENS) The Fyodorov-Bouchaud formula June 22, 2018 22 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend