universal short time dynamics frg for a temperature quench
play

Universal short-time dynamics: FRG for a temperature quench - PowerPoint PPT Presentation

Universal short-time dynamics: FRG for a temperature quench arXiv:1606.06272 Alessio Chiocchetta SISSA and INFN, Trieste (Italy) In collaboration with: Jamir Marino ThP , Cologne (Germany) Sebastian Diehl ThP , Cologne (Germany) Andrea


  1. Universal short-time dynamics: FRG for a temperature quench arXiv:1606.06272 Alessio Chiocchetta SISSA and INFN, Trieste (Italy) In collaboration with: Jamir Marino ThP , Cologne (Germany) Sebastian Diehl ThP , Cologne (Germany) Andrea Gambassi SISSA and INFN, Trieste (Italy) Trieste, 19th September 2016

  2. Quench dynamics

  3. Quench dynamics

  4. Quench dynamics Bath T initial equilibrium driven P 0 ( { σ } ) P eq ( { σ } , T ) distribution by reservoir Example: Metropolis algorithm E M MC steps MC steps

  5. Quench dynamics Bath T initial equilibrium driven P 0 ( { σ } ) P eq ( { σ } , T ) distribution by reservoir Example: Metropolis algorithm E M t relax MC steps MC steps

  6. Quench dynamics Bath T ' T c initial equilibrium driven P 0 ( { σ } ) P eq ( { σ } , T ) distribution by reservoir T ' T c equilibrium: correlation length and time diverges quench: too! Equilibrium is attained in infinite time t relax Is there some universal AGING behaviour? Janssen, Schaub, Schmittman ’89 rev: Calabrese & Gambassi ’05

  7. Aging dynamics New critical exponents? at criticality: Janssen, Schaub, Schmittman ’89 ( ξ = ∞ ) rev: Calabrese & Gambassi ’05 1) two-time correlation functions G R ( q, t, t 0 ) = q � 2+ η + z G R ( q z t, q z t 0 ) η , z (response function) equilibrium G C ( q, t, t 0 ) = q � 2+ η G C ( q z t, q z t 0 ) exponents (correlation function)

  8. Aging dynamics New critical exponents? at criticality: Janssen, Schaub, Schmittman ’89 ( ξ = ∞ ) rev: Calabrese & Gambassi ’05 1) two-time correlation functions G R ( q, t, t 0 ) = q � 2+ η + z G R ( q z t, q z t 0 ) η , z (response function) equilibrium G C ( q, t, t 0 ) = q � 2+ η G C ( q z t, q z t 0 ) exponents (correlation function) if t 0 ⌧ t G C ( q, t, t 0 ) = q � 2+ η ( t/t 0 ) θ � 1 e G C ( q z t, q z t 0 ) G R ( q, t, t 0 ) = q � 2+ η + z ( t/t 0 ) θ e G R ( q z t, q z t 0 ) new non-equilibrium exponent ! θ

  9. Aging dynamics New critical exponents? at criticality: ( ξ = ∞ ) Janssen, Schaub, Schmittman ’89 rev: Calabrese & Gambassi ’05 2) magnetization ext. magnetic no ext. magnetic Modify quench field for t<0 field for t>0 protocol: ∼ t θ 0 h φ ( t ) i M ( t ) = M 0 t θ 0 M ( M 0 t θ 0 + β /z ν ) θ 0 = θ + (2 − z − η ) /z 0 cf. equilibrium Take home message : breaking of time-translational systems with spatial invariance (or fluctuation-dissipation theorem) boundaries generates new exponents Sieberer et al. ’13, ‘14 Marino & Diehl ‘16

  10. Theoretical description coarse graining: Hohenberg- criticality Hohenberg & Halperin models Halperin ‘77 e.g., Ising model: lattice continuum φ ( x ) spin variables field σ i microscopic Hamiltonian effective Hamiltonian Glauber dynamics of Ising model: Model A Gaussian noise h 6 φ 2 i r 2 � r � g ˙ φ = φ + ζ h ζ ( r , t ) ζ ( r 0 , t 0 ) i = 2 T δ ( d ) ( r � r 0 ) δ ( t � t 0 ) τ 0 φ 2 R Initial condition is stochastic: 0 / 2 φ 0 P [ φ 0 ] ∝ e − Initial correlation length: τ − 1 / 2 → 0 0

  11. Response functional Martin, Siggia, Rose ‘73 Janssen ‘76 De Dominicis ‘76 Z Z O ( φ )e − S [ φ , e φ ] O ( φ ) h δ [ φ � φ ( t )] i ζ , φ 0 = h O ( t ) i = New field: response field e φ φ ] contain info also on initial conditions S [ φ , e This action is viable for renormalization

  12. Renormalization and critical exponents Equilibrium: some divergencies, renormalization required renormalization critical exps. r, φ , e φ ν , η , z Quench: new divergences, additional renormalization required initial slip exp. renormalization e θ φ 0 - second order in expansion ✏ value of : rev: Calabrese & - large-N limit of O(N) θ Gambassi ’05 - Monte Carlo

  13. Functional renormalization group Modified action: S k [ Ψ ] = S [ Ψ ] + ∆ S k [ Ψ ] Ψ = ( ϕ , e ϕ ) ∆ S k [ Ψ ] imposes a IR cutoff parametrized by k (coarse-grained over effective action Γ k [ Φ ] S k [ Ψ ] volume ) ∼ k − d "✓ δ 2 Γ k ◆ − 1 d R k # Z d Γ k d k = 1 FRG equation tr δ Φ t δ Φ + R k 2 d k Wetterich ‘93

  14. Functional renormalization group How to include the quench? An ansatz for has to be used. Γ k [ Φ ] ✓ ◆ Z φ + K r 2 φ + ∂ U Z ˙ Γ [ φ , e φ ] = Γ 0 [ φ 0 , e ϑ ( t � t 0 ) e ∂φ � D e φ 0 ] + φ φ x quench initial potential conditions Formally similar to a boundary problem: bulk effective action boundary effective action 0 t

  15. Functional renormalization group How to include the quench? An ansatz for has to be used. Γ k [ Φ ] ✓ ◆ Z φ + K r 2 φ + ∂ U Z ˙ Γ [ φ , e φ ] = Γ 0 [ φ 0 , e ϑ ( t � t 0 ) e ∂φ � D e φ 0 ] + φ φ x quench initial potential conditions determined Z ✓ ◆ − Z 2 from and P [ φ 0 ] e 0 + Z 0 e 0 φ 2 Γ 0 = φ 0 φ 0 causality 2 τ 0 arguments

  16. How to perform FRG with a boundary Breaking of TTI Fourier transform not useful Our approach: 3 steps Step 1: write an ansatz for the potential U ( φ ) U ( φ ) τ > 0 Simplest ansatz: φ U ( φ ) = τ 2 φ 2 + g 4! φ 4 U ( φ ) τ < 0 φ

  17. How to perform FRG with a boundary Breaking of TTI Fourier transform not useful Our approach: 3 steps Step 2: rewrite FRG eq. as follows:  � d Γ d k = 1 ϑ ( t − t 0 ) G ( x, x )d R Z tr d k σ 2 x ⌘ − 1 Γ (2) + R ⇣ = ( G − 1 − V ) − 1 G = 0 field field independent dependent

  18. How to perform FRG with a boundary Breaking of TTI Fourier transform not useful Our approach: 3 steps  � d Γ d k = 1 ϑ ( t − t 0 ) G ( x, x )d R Z Step 2: tr d k σ 2 x Z Dyson-like G ( x, x 0 ) = G 0 ( x, x 0 ) + G 0 ( x, y ) V ( y ) G ( y, x 0 ) equation y + 1 Each term can X = G 0 ( x, x 0 ) + G n ( x, x 0 ) be evaluated! n =1 ∼ φ 2 n

  19. How to perform FRG with a boundary Breaking of TTI Fourier transform not useful Our approach: 3 steps Step 3: replace these terms into FRG eq. constant value: renormalizes bulk Z Z ∞ d Γ k d t e φφ [1 + f ( t )] d k ∝ vanishing function 0 r Bulk i� Z ∞ h X � ∞ d n renormalizes d t e e � φ ( t ) φ ( t ) f ( t ) = φ ( t ) φ ( t ) c n � the d t n 0 t =0 n =0 boundary!

  20. Functional renormalization group more refined m ) 2 + λ U = g 4!( φ 2 − φ 2 6!( φ 2 − φ 2 m ) 3 ansatz:

  21. Functional renormalization group more refined m ) 2 + λ U = g 4!( φ 2 − φ 2 6!( φ 2 − φ 2 m ) 3 ansatz: ��� ���� RG ✏ 2 ���� θ ● ��� ���� FRG θ ��� ���� �� ���� � RG ��� ✏ ��� ��� ��� ��� ��� ��� � Monte Carlo

  22. Conclusion & outlook Summary • Critical quench generates new critical exponents • FRG can be used to compute non-equilibrium exponents • Good agreement with numerics and perturbative RG Near future... • Full potential see Jamir • Application to quenches in isolated quantum systems Marino’s • O(N) and Potts models talk! • Other HH models (conserved dynamics) ... far future • non-thermal fixed points? • coarsening dynamics • towards new exp. platforms (cold atoms, exciton-polaritons…)

  23. Thank you for your attention!

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend