u ne attaque polynomiale du sch
play

U NE ATTAQUE POLYNOMIALE DU SCH EMA DE I NTRODUCTION M C E LIECE - PowerPoint PPT Presentation

U NE ATTAQUE POLYNOMIALE DU SCH EMA DE M C E LIECE BAS E SUR LES CODES G EOM ETRIQUES C ODING T HEORY D ECODING P ROBLEM U NE ATTAQUE POLYNOMIALE DU SCH EMA DE I NTRODUCTION M C E LIECE BAS E SUR LES CODES G EOM P UBLIC


  1. U NE ATTAQUE POLYNOMIALE DU SCH ´ EMA DE M C E LIECE BAS ´ E SUR LES CODES G ´ EOM ´ ETRIQUES C ODING T HEORY D ECODING P ROBLEM U NE ATTAQUE POLYNOMIALE DU SCH ´ EMA DE I NTRODUCTION M C E LIECE BAS ´ E SUR LES CODES G ´ EOM ´ P UBLIC -K EY C RYPTOSYSTEMS ETRIQUES M C E LIECE C RYPTOSYSTEM P ROPOSALS GRS CODES S UBCODES OF GRS CODES A. C OUVREUR 1 ARQUEZ -C ORBELLA 1 R. P ELLIKAAN 2 I. M ´ B INARY R EED -M ULLER CODES AG CODES B INARY G OPPA CODES 1INRIA Saclay & LIX D ECODING BY ECP ECP FOR GRS 2Department of Mathematics and Computing Science, TU/e. ECP FOR AG C ONTEXT Caramel Seminars - Thursday June 19, 2014 P-F ILTRATION § 5.1 C OMPUTE B T HE A TTACK N ON DEGENERATE B C OMPLEXITY E XAMPLES H ERMITIAN CURVES S UZUKI CURVES 1 / 51 C ONCLUSIONS

  2. I NTRODUCTION TO C ODING T HEORY U NE ATTAQUE POLYNOMIALE DU SCH ´ An [ n , k ] linear code C over F q is a k -dimensional subspace of F n EMA q . DE M C E LIECE BAS ´ E SUR LES CODES G ´ EOM ´ ETRIQUES Its size is M = q k , the information rate is R = k n and the redundancy is n − k . The generator matrix of C is a k × n matrix G whose rows form a basis of C , C ODING T HEORY i.e. D ECODING P ROBLEM � x G | x ∈ F k � C = I NTRODUCTION . q P UBLIC -K EY C RYPTOSYSTEMS The parity-check matrix of C is an ( n − k ) × n matrix H whose nullspace is M C E LIECE C RYPTOSYSTEM generated by the codewords of C , i.e. P ROPOSALS GRS CODES q | H y T = 0 � � y ∈ F n C = . S UBCODES OF GRS CODES B INARY R EED -M ULLER CODES AG CODES The hamming distance between x , y ∈ F n q is d H ( x , y ) = |{ i | x i � = y i }| . B INARY G OPPA CODES The minimum distance of C is D ECODING BY ECP ECP FOR GRS d ( C ) = min { d H ( c 1 , c 2 ) | c 1 , c 2 ∈ C and c 1 � = c 2 } . ECP FOR AG C ONTEXT P-F ILTRATION § 5.1 C OMPUTE B y y x 1 x 2 x 1 x 2 T HE A TTACK N ON DEGENERATE B C OMPLEXITY F IGURE : If d ( C ) = 3 F IGURE : If d ( C ) = 4 E XAMPLES H ERMITIAN CURVES S UZUKI CURVES 2 / 51 C ONCLUSIONS

  3. D ECODING L INEAR C ODES U NE ATTAQUE The Decoding problem: POLYNOMIALE DU SCH ´ EMA DE M C E LIECE BAS ´ E SUR LES CODES G ´ EOM ´ ETRIQUES Input: a Generator matrix G ∈ F k × n of C and the received word y ∈ F n q q Output: A closest codeword c , i.e. C ODING T HEORY D ECODING P ROBLEM c ∈ C : d H ( c , y ) = min { d H (ˆ c , y ) | ˆ c ∈ C} I NTRODUCTION P UBLIC -K EY C RYPTOSYSTEMS Decoding arbitrary linear codes : Exponential complexity M C E LIECE C RYPTOSYSTEM P ROPOSALS GRS CODES D ECODING S PECIAL C LASSES OF C ODES S UBCODES OF GRS CODES B INARY R EED -M ULLER CODES Efficient decoding algorithms up to half the minimum distance for: AG CODES B INARY G OPPA CODES Generalized Reed-Solomon codes 1 � n 3 � Polynomial complexity ∼ O D ECODING BY ECP Goppa codes 2 ECP FOR GRS Algebraic Geometry codes ECP FOR AG 3 C ONTEXT P-F ILTRATION § 5.1 C OMPUTE B Peterson, Arimoto, 1960 Sakata, 1990 T HE A TTACK Berlekamp-Massy, 1963 N ON DEGENERATE B Feng-Rao, Duursma 1993 Justensen-Larsen-Havemose-Jensen-Høholdt, C OMPLEXITY 1989 Sudam, Guruswami, 1997 E XAMPLES Skorobogatov-Vladut, 1990 H ERMITIAN CURVES S UZUKI CURVES 3 / 51 C ONCLUSIONS

  4. P UBLIC -K EY C RYPTOSYSTEMS U NE ATTAQUE POLYNOMIALE DU SCH ´ EMA DE M C E LIECE BAS ´ E SUR LES CODES G ´ EOM ´ ETRIQUES C ODING T HEORY D ECODING P ROBLEM I NTRODUCTION P UBLIC -K EY C RYPTOSYSTEMS M OST PKC ARE BASED ON N UMBER - THEORETIC PROBLEMS M C E LIECE C RYPTOSYSTEM P ROPOSALS GRS CODES ➜ It can be attacked in polynomial S UBCODES OF GRS CODES time using Shor’s algorithm B INARY R EED -M ULLER CODES AG CODES B INARY G OPPA CODES D ECODING BY ECP ECP FOR GRS ECP FOR AG ECDSA RSA C ONTEXT P-F ILTRATION ECC § 5.1 C OMPUTE B T HE A TTACK DSA N ON DEGENERATE B C OMPLEXITY HECC E XAMPLES H ERMITIAN CURVES S UZUKI CURVES 4 / 51 C ONCLUSIONS

  5. M C E LIECE CRYPTOSYSTEM U NE ATTAQUE POLYNOMIALE DU SCH ´ EMA DE M C E LIECE BAS ´ E SUR LES CODES G ´ EOM ´ ETRIQUES C ODING T HEORY ➜ McEliece introduced the first PKC based on Error-Correcting Codes in 1978 . D ECODING P ROBLEM I NTRODUCTION P UBLIC -K EY C RYPTOSYSTEMS M C E LIECE C RYPTOSYSTEM P ROPOSALS GRS CODES S UBCODES OF GRS CODES Advantages: B INARY R EED -M ULLER CODES AG CODES B INARY G OPPA CODES 1 Fast encryption Drawback: (matrix-vector multiplication) D ECODING BY ECP ECP FOR GRS and decryption functions. ➣ Large key size. ECP FOR AG 2 Interesting candidate for C ONTEXT post-quantum cryptography. P-F ILTRATION § 5.1 C OMPUTE B T HE A TTACK N ON DEGENERATE B R. J. McEliece. C OMPLEXITY A public-key cryptosystem based on algebraic coding theory . E XAMPLES DSN Progress Report, 42-44:114-116, 1978. H ERMITIAN CURVES S UZUKI CURVES 5 / 51 C ONCLUSIONS

  6. M C E LIECE C RYPTOSYSTEM U NE ATTAQUE POLYNOMIALE DU SCH ´ EMA DE M C E LIECE BAS ´ E SUR LES ➜ t ∈ N ∗ = ⇒ Error-correcting capacity of C CODES G ´ EOM ´ ETRIQUES C ODING T HEORY D ECODING P ROBLEM Consider any triplet: I NTRODUCTION P UBLIC -K EY C RYPTOSYSTEMS   M C E LIECE C RYPTOSYSTEM P ROPOSALS      C , A C ( t ) GRS CODES    S UBCODES OF GRS CODES B INARY R EED -M ULLER CODES AG CODES B INARY G OPPA CODES D ECODING BY ECP ECP FOR GRS ➜ [ n , k ] q linear code with an efficient decoding algorithm ECP FOR AG ➠ Let G be a non structured generator matrix of C . C ONTEXT P-F ILTRATION § 5.1 C OMPUTE B T HE A TTACK ➜ “Efficient” decoding algorithm for C which corrects up to t errors. N ON DEGENERATE B C OMPLEXITY E XAMPLES H ERMITIAN CURVES S UZUKI CURVES 6 / 51 C ONCLUSIONS

  7. M C E LIECE C RYPTOSYSTEM U NE ATTAQUE POLYNOMIALE DU SCH ´ EMA DE M C E LIECE BAS ´ E SUR LES CODES G ´ EOM ´ ETRIQUES K EY G ENERATION C ODING T HEORY Given: D ECODING P ROBLEM 1 McEliece Public Key: K pub = ( G , t ) I NTRODUCTION P UBLIC -K EY C RYPTOSYSTEMS 2 McEliece Private Key: K secret = ( A C ) M C E LIECE C RYPTOSYSTEM P ROPOSALS GRS CODES E NCRYPTION S UBCODES OF GRS CODES B INARY R EED -M ULLER CODES Encrypt a message m ∈ F k q as AG CODES B INARY G OPPA CODES y = m G + e D ECODING BY ECP ECP FOR GRS ECP FOR AG where e is a random error vector of weight at most t . C ONTEXT P-F ILTRATION D ECRYPTION § 5.1 C OMPUTE B T HE A TTACK Using K secret , the receiver obtain m . N ON DEGENERATE B C OMPLEXITY E XAMPLES H ERMITIAN CURVES S UZUKI CURVES 7 / 51 C ONCLUSIONS

  8. P ROPOSALS U NE ATTAQUE POLYNOMIALE DU SCH ´ EMA DE M C E LIECE BAS ´ E SUR LES CODES G ´ EOM ´ ETRIQUES Binary C ODING T HEORY Subcodes of GRS D ECODING P ROBLEM GRS codes Reed-Muller codes I NTRODUCTION codes P UBLIC -K EY C RYPTOSYSTEMS M C E LIECE C RYPTOSYSTEM P ROPOSALS GRS CODES S UBCODES OF GRS CODES B INARY R EED -M ULLER CODES Several Proposals AG CODES B INARY G OPPA CODES D ECODING BY ECP ECP FOR GRS ECP FOR AG C ONTEXT P-F ILTRATION Binary Goppa AG codes § 5.1 C OMPUTE B codes T HE A TTACK N ON DEGENERATE B C OMPLEXITY E XAMPLES H ERMITIAN CURVES S UZUKI CURVES 8 / 51 C ONCLUSIONS

  9. GRS CODES U NE ATTAQUE POLYNOMIALE DU SCH ´ EMA DE M C E LIECE BAS ´ E SUR LES CODES G ´ EOM ´ ETRIQUES ➮ The class of GRS codes was proposed by Niederreiter in 1986 C ODING T HEORY D ECODING P ROBLEM for code-based PKC. I NTRODUCTION P UBLIC -K EY C RYPTOSYSTEMS M C E LIECE C RYPTOSYSTEM ✖ Sidelnikov-Shestakov in 1992 introduced an algorithm that P ROPOSALS breaks this proposal in polynomial time. GRS CODES S UBCODES OF GRS CODES B INARY R EED -M ULLER CODES AG CODES B INARY G OPPA CODES D ECODING BY ECP ECP FOR GRS ECP FOR AG Parameters Key size Security level C ONTEXT 2 95 [ 256 , 128 , 129 ] 256 67 ko P-F ILTRATION § 5.1 C OMPUTE B T HE A TTACK N ON DEGENERATE B C OMPLEXITY E XAMPLES H ERMITIAN CURVES S UZUKI CURVES 9 / 51 C ONCLUSIONS

  10. S UBCODES OF GRS CODES I U NE ATTAQUE POLYNOMIALE DU SCH ´ EMA DE M C E LIECE BAS ´ E SUR LES CODES G ´ EOM ´ ETRIQUES ➮ Berger and Loidreau in 2005 propose another version of the C ODING T HEORY D ECODING P ROBLEM Niederreiter scheme designed to resist the Sidelnikov-Shestakov I NTRODUCTION attack. P UBLIC -K EY C RYPTOSYSTEMS ➜ Main idea: work with subcodes of the original GRS code. M C E LIECE C RYPTOSYSTEM P ROPOSALS GRS CODES ✖ Attacks: S UBCODES OF GRS CODES ✖ Wieschebrink: ( 2010 ) B INARY R EED -M ULLER CODES AG CODES B INARY G OPPA CODES Presents the first feasible attack to the Berger-Loidreau cryptosystem but is impractical for small subcodes. D ECODING BY ECP Notes that if the square code of a subcode of a GRS code of parameters [ n , k ] q ECP FOR GRS is itself a GRS code of dimension 2 k − 1 then we can apply ECP FOR AG Sidelnikov-Shestakov attack. C ONTEXT artinez-Pellikaan: ( 2012 ) Give a characterization of the possible ✖ M-M´ P-F ILTRATION parameters that should be used to avoid attacks on the Berger-Loidreau § 5.1 C OMPUTE B cryptosystem. T HE A TTACK N ON DEGENERATE B C OMPLEXITY E XAMPLES H ERMITIAN CURVES S UZUKI CURVES 10 / 51 C ONCLUSIONS

  11. S UBCODES OF GRS CODES II U NE ATTAQUE POLYNOMIALE DU SCH ´ EMA DE M C E LIECE BAS ´ E SUR LES CODES G ´ EOM ´ ETRIQUES C ODING T HEORY D ECODING P ROBLEM I NTRODUCTION ➮ Wieschebrick ( 2010 ) and Baldi et al. ( 2011 ) proposed other P UBLIC -K EY C RYPTOSYSTEMS M C E LIECE C RYPTOSYSTEM variants of the Niederreiter scheme. P ROPOSALS GRS CODES S UBCODES OF GRS CODES ✖ Attacks: Couvreur et al. ( 2013 ) provide a cryptanalysis of these B INARY R EED -M ULLER CODES AG CODES schemes. B INARY G OPPA CODES D ECODING BY ECP ECP FOR GRS ECP FOR AG C ONTEXT P-F ILTRATION § 5.1 C OMPUTE B T HE A TTACK N ON DEGENERATE B C OMPLEXITY E XAMPLES H ERMITIAN CURVES S UZUKI CURVES 11 / 51 C ONCLUSIONS

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend