robust preconditioning in elasticity
play

Robust Preconditioning in Elasticity Joachim Sch oberl Center for - PowerPoint PPT Presentation

Robust Preconditioning in Elasticity Joachim Sch oberl Center for Computational Engineering Sciences (CCES) RWTH Aachen University Germany DD17, Strobl, 2006, July 3-7 Joachim Sch oberl Page 1 System of PDEs Linear elasticity:


  1. Robust Preconditioning in Elasticity Joachim Sch¨ oberl Center for Computational Engineering Sciences (CCES) RWTH Aachen University Germany DD17, Strobl, 2006, July 3-7 Joachim Sch¨ oberl Page 1

  2. System of PDEs Linear elasticity: � A ( u, v ) = µ ε ( u ) : ε ( v ) + λ div u div v dx displacement u ∈ [ H 1 0 ,D ] d , strain operator ε ( u ) := 0 . 5( ∇ u + ( ∇ u ) T ) Lam´ e parameters µ, λ . Timoshenko beam model: � 1 � 1 β ′ δ ′ dx + t − 2 ( w ′ − β )( v ′ − δ ) dx A ( w, β ; v, δ ) = 0 0 t vertical displacement w , rotation β , thickness t , w β In principle the same as a scalar PDE Joachim Sch¨ oberl Parameter Dependent Problems Page 2

  3. System of PDEs Linear elasticity: � A ( u, v ) = µ µ ε ( u ) : ε ( v ) + λ λ div u div v dx Nearly incompressible materials: λ ≫ µ Timoshenko beam model: � 1 � 1 β ′ δ ′ dx + t − 2 ( w ′ − β )( v ′ − δ ) dx A ( w, β ; v, δ ) = 0 0 Thin beam: t ≪ 1 In principle the same as a scalar PDE but dependency on parameters Joachim Sch¨ oberl Parameter Dependent Problems Page 2

  4. Parameter Dependent Problems [Arnold 81] Find u ∈ V : A ε ( u, v ) = f ( v ) ∀ v ∈ V with A ε ( u, v ) = a ( u, v ) + 1 ε c (Λ u, Λ v ) small parameter: ε ∈ (0 , 1] symmetric bilinear form: a ( u, u ) ≥ 0 ∀ u ∈ V Hilbert space: ( Q, c ( ., . )) operator: Λ : V → Q with kernel: V 0 := kern Λ A 1 ( u, u ) ≃ � u � 2 Well posed for ε = 1 : V Joachim Sch¨ oberl Parameter Dependent Problems Page 3

  5. A priori estimates Univorm V -coercivity:: A ε ( u, u ) ≥ A 1 ( u, u ) � � u � 2 V Non-uniform V -continuity: A ε ( u, u ) ≤ ε − 1 A 1 ( u, u ) � ε − 1 � u � 2 V Non-robust a priori error estimate: � u − u h � V ≤ ε − 1 / 2 inf � u − v h � V v h ∈ V h 0.12 t=1e-1 t=1e-2 t=1e-3 0.1 0.08 Numerical example: Timoshenko beam w(1) 0.06 Vertical load f = 1 , compute w (1) : 0.04 0.02 0 1 10 100 1000 10000 Elements Joachim Sch¨ oberl Parameter Dependent Problems Page 4

  6. Primal FEM with Reduction Operators The primal FEM a ( u h , v h ) + 1 Find u h ∈ V h s.t.: εc (Λ u h , Λ v h ) = f ( v h ) ∀ v h ∈ V h often leads to bad results, knwon as locking phenomena. (One) explanation: This is a penalty approximation to Λ u = 0 , but no FE functions fulfill Λ u h = 0 , i.e. V 0 ∩ V h too small. Joachim Sch¨ oberl Parameter Dependent Problems Page 5

  7. Primal FEM with Reduction Operators The primal FEM a ( u h , v h ) + 1 Find u h ∈ V h s.t.: εc (Λ u h , Λ v h ) = f ( v h ) ∀ v h ∈ V h often leads to bad results, knwon as locking phenomena. (One) explanation: This is a penalty approximation to Λ u = 0 , but no FE functions fulfill Λ u h = 0 , i.e. V 0 ∩ V h too small. Weaken the high energy term by reduction operator R h (reduced integration, B-bar method, mixed method , EAS, ...) a ( u h , v h ) + 1 Find u h ∈ V h s.t.: εc ( R h Λ u h , R h Λ v h ) = f ( v h ) ∀ v h ∈ V h Large enough kernel V h, 0 = kern R h Λ ∩ V h Joachim Sch¨ oberl Parameter Dependent Problems Page 5

  8. Numerical example: Timoshenko beam Vertical load f = 1 , compute w (1) : Conforming FEM: With reduction operator: 0.12 0.12 t=1e-1 t=1e-1 t=1e-2 t=1e-2 t=1e-3 t=1e-3 0.1 0.1 0.08 0.08 w(1) w(1) 0.06 0.06 0.04 0.04 0.02 0.02 0 0 1 10 100 1000 10000 1 10 100 1000 Elements Elements Joachim Sch¨ oberl Parameter Dependent Problems Page 6

  9. Analysis by mixed formulation Primal method: a ( u, v ) + ε − 1 c (Λ u, Λ v ) = f ( v ) Find u ∈ V : ∀ v ∈ V Introduce new variable p = ε − 1 Λ u ∈ Q . a ( u, v ) + c (Λ v, p ) = f ( v ) ∀ v ∈ V c (Λ u, q ) − εc ( p, q ) = 0 ∀ q ∈ Q Joachim Sch¨ oberl Parameter Dependent Problems Page 7

  10. Analysis by mixed formulation Primal method: a ( u, v ) + ε − 1 c (Λ u, Λ v ) = f ( v ) Find u ∈ V : ∀ v ∈ V Introduce new variable p = ε − 1 Λ u ∈ Q . a ( u, v ) + c (Λ v, p ) = f ( v ) ∀ v ∈ V c (Λ u, q ) − εc ( p, q ) = 0 ∀ q ∈ Q Mixed bilinear-from B ( · , · ) : ( V × Q ) × ( V × Q ) → R B (( u, p ) , ( v, q )) = a ( u, v ) + c (Λ u, q ) + c (Λ v, p ) − εc ( p, q ) Mixed problem: Find ( u, p ) ∈ V × Q : B (( u, p ) , ( v, q )) = f ( v ) ∀ ( v, q ) ∈ V × Q Joachim Sch¨ oberl Parameter Dependent Problems Page 7

  11. Well-posed mixed formulation Define norm � . � Q, 0 such that the LBB condition is fulfilled by definition: c (Λ v, p ) � q � Q, 0 := sup � v � V v ∈ V Product space norm � ( v, q ) � 2 V × Q = � v � 2 V + � q � 2 Q, 0 + ε � q � 2 c Then B ( ., . ) is uniformely continuous: B (( u, p ) , ( v, q )) sup sup � 1 � ( u, p ) � V × Q � ( v, q ) � V × Q ( u,p ) ( v,q ) and uniformely inf − sup stable: B (( u, p ) , ( v, q )) ( u,p ) sup inf � 1 � ( u, p ) � V × Q � ( v, q ) � V × Q ( v,q ) Joachim Sch¨ oberl Parameter Dependent Problems Page 8

  12. Example: Nearly incompressible elasticity 0 ,D ] 2 and p ∈ Q = L 2 such that Find u ∈ V = [ H 1 � � � µ ε ( u ) : ε ( v ) dx + div v p dx = f · v dx ∀ v ∈ V λ − 1 � � div u q dx − p q dx = 0 ∀ q ∈ Q The limit problem for λ → ∞ is a Stokes-like problem. Mixed finite element discretization by Stokes-stable (discrete LBB !) element pairs, e.g., V h = { v ∈ V : v | T ∈ P 2 } Q h = { q ∈ Q : q | T ∈ P 0 } . Joachim Sch¨ oberl Parameter Dependent Problems Page 9

  13. Example: Nearly incompressible elasticity 0 ,D ] 2 and p ∈ Q = L 2 such that Find u ∈ V = [ H 1 � � � µ ε ( u ) : ε ( v ) dx + div v p dx = f · v dx ∀ v ∈ V λ − 1 � � div u q dx − p q dx = 0 ∀ q ∈ Q The limit problem for λ → ∞ is a Stokes-like problem. Mixed finite element discretization by Stokes-stable (discrete LBB !) element pairs, e.g., V h = { v ∈ V : v | T ∈ P 2 } Q h = { q ∈ Q : q | T ∈ P 0 } . A priori estimates by stability and approximation: � ( u − v h , p − p h ) � V × Q � h α ( � u � H 1+ α + � p � H α ) � ( u − u h , p − p h ) � V × Q � inf v h ∈ V h ,q h ∈ Q h Joachim Sch¨ oberl Parameter Dependent Problems Page 9

  14. Solvers for linear system Indefinite matrix equation B T � � � � � � A u f = B − εC p 0 • Block Transformation: Inexact Uzawa, SIMPLE, GMRES Axelsson-Vassilevski, Bramble-Pasciak, Langer-Queck, Rusten-Winther, Bank-Welfert-Yserentant, Klawonn, Bramble-Pasciak-Vassilev, Zulehner, Benzi-Golub-Liesen, ... Use (standard) preconditioners for A and for Schur-complement B T A − 1 B + εC . • Multigrid for indefinite problem: Braess-Bl¨ omer, Brenner, Huang, Wittum, Braess-Sarazin, Zulehner, Sch¨ oberl-Zulehner Use special smoothers (squared system, Vanka, SIMPLE) Joachim Sch¨ oberl Parameter Dependent Problems Page 10

  15. Schur complement system Indefinite matrix equation B T � � � � � � A u f = B − εC p 0 Elimination of p from second line leads to the Schur complement system � A + 1 � εB T C − 1 B u = f Cheap if C is (block-)diagonal. Positive definite matrix of smaller dimension, but very ill conditioned for ε → 0 Goal: Design of ε -robust solver Joachim Sch¨ oberl Parameter Dependent Problems Page 11

  16. Elimination of dual variable on the finite element level Finite element system: Find u h ∈ V h and p h ∈ Q h such that a ( u h , v h ) + c (Λ u h , p h ) = f ( v h ) ∀ v h ∈ V h c (Λ u h , q h ) − εc ( p h , q h ) = 0 ∀ q h ∈ Q h Second line defines p h : p h = ε − 1 P c Q h Λ u h Use in first line: a ( u h , v h ) + ε − 1 c ( P c Q h Λ u h , P c Q h Λ p h ) = f ( v h ) ∀ v h ∈ V h Joachim Sch¨ oberl Parameter Dependent Problems Page 12

  17. Elimination of dual variable on the finite element level Finite element system: Find u h ∈ V h and p h ∈ Q h such that a ( u h , v h ) + c (Λ u h , p h ) = f ( v h ) ∀ v h ∈ V h c (Λ u h , q h ) − εc ( p h , q h ) = 0 ∀ q h ∈ Q h Second line defines p h : p h = ε − 1 P c Q h Λ u h Use in first line: a ( u h , v h ) + ε − 1 c ( P c Q h Λ u h , P c Q h Λ p h ) = f ( v h ) ∀ v h ∈ V h Elasticity with reduction operators: � h div v h dx A ε h ( u, v ) = µε ( u ) : ε ( v ) + λ div u Discrete kernel: � V h 0 = { v h ∈ V h : div v h dx = 0 ∀ T ∈ T } T Joachim Sch¨ oberl Parameter Dependent Problems Page 12

  18. Timoshenko beam Conforming bilinear form: � � β ′ δ ′ dx + t − 2 ( w ′ − β )( v ′ − δ ) dx A (( w, β ) , ( v, δ )) = has the kernel V 0 = { ( v, δ ) : δ = v ′ } t → 0 is a penalty approximation to the 4 th -order Bernoulli model A ( w, v ) = f ( v ) with � w ′′ v ′′ dx A ( w, v ) = Reduction of a (stable !) mixed system with w ∈ P 1 , β ∈ P 1 , q ∈ P 0 leads to h ( v ′ h dx � � h dx + t − 2 β ′ h δ ′ A h (( w h , β h ) , ( v h , δ h )) = ( w ′ h − β h ) h − δ h ) Joachim Sch¨ oberl Parameter Dependent Problems Page 13

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend