d3 branes strings and f theory in various dimensions
play

D3-branes, Strings and F-Theory in Various Dimensions 1601.02015 - PowerPoint PPT Presentation

D3-branes, Strings and F-Theory in Various Dimensions 1601.02015 (JHEP) with Sakura Sch afer-Nameki 1612.05640 with Craig Lawrie and Sakura Sch afer-Nameki 1612.06393 with Craig Lawrie and Sakura Sch afer-Nameki Timo Weigand


  1. D3-branes, Strings and F-Theory in Various Dimensions • 1601.02015 (JHEP) with Sakura Sch¨ afer-Nameki • 1612.05640 with Craig Lawrie and Sakura Sch¨ afer-Nameki • 1612.06393 with Craig Lawrie and Sakura Sch¨ afer-Nameki Timo Weigand CERN and ITP Heidelberg F–Theory 2017, Trieste – p.1

  2. F-theory and D3-branes F-theory geometrises the physics of 7-branes and D(-1)-instantons. D3-branes probe this backreacted geometry. Relevance of D3-branes in F-theory includes: 1) D3 on R 1 , 3 × pt pt ⊂ CY 4 Spacetime-filling D ⊂ B 3 ⊂ CY 4 divisor Instanton 2) D3 on pt × D 3) D3 on R 1 , 1 × C C ⊂ B n − 1 ⊂ CY n curve String We will focus on strings from wrapped D3-branes: • C ⊂ CY 3 : self-dual string in 6d ↔ relation to 6d SCFTs • C ⊂ CY 4 : cosmic string in R 1 , 3 - codimension-two object • C ⊂ CY 5 : filling R 1 , 1 and required by tadpoles Aim : Microscopic understanding of 2d QFT on string in various dimensions F–Theory 2017, Trieste – p.2

  3. D3-strings in F-theory 1) Extrinsic Motivation: • 7-brane background for D3-strings as a means to geometrically engineer (new?) chiral 2d theories and SCFTs • Methods to describe gauge theories with varying gauge coupling via topological duality twist [Martucci’14] = ⇒ Go beyond topological twist of [Bershadsky,Johansen,Vafa,Sadov’95] , [Benini,Bobev’13] ,. . . 2) Intrinsic Motivation: D3-branes are exciting window into non-perturbative dynamics captured by F-theory • Quantum Higgsing • Mysterious 3-7 string sector F–Theory 2017, Trieste – p.3

  4. Outline 1) Topological (Duality) Twist on D3-brane on C 2) Massless Spectrum for Strings from D3-branes 3) Quantum Higgsing via F-theory 4) Anomalies and 3-7 Modes 5) 2d (0,2) Gravity Sector F–Theory 2017, Trieste – p.4

  5. The general setup F-theory on Y n with base B n − 1 D3-brane on R 1 , 1 × C C a curve in base C ⊂ B n − 1 This talk: Single D3 with C not contained in discriminant locus ∆ • C is transverse to 7-branes on B n − 1 • C intersects 7-branes in isolated points on B n − 1 M-theory dual descriptions via T-duality see talk by S. Sch¨ afer-Nameki • transverse to D3-string on R 1 , 1 : M5-brane • parallel to D3-string on R 1 , 1 : M2-brane This talk: We will describe theory directly in language of F-Theory via topological duality twist [Martucci’14] F–Theory 2017, Trieste – p.5

  6. Duality bundle • 4d N = 4 SYM coupling on D3 F-theory axio-dilaton = 2 π + i 4 π θ τ = C 0 + ie − φ g 2 • 7-brane τ -variation on C ⊂ B n − 1 = ⇒ background monodromy around C ∩ (7-brane) • Consistent due to SL (2 , Z ) duality of N = 4 SYM: ( F, F D ) → M SL(2 , Z ) ( F, F D ) τ → aτ + b e iα = cτ + d SYM fields : Φ → e iqα Φ cτ + d with | cτ + d | q : U (1) D charge ’bonus symmetry’ [Intriligator’98] [Kapustin,Witten’06] • τ -variation on C described by non-trivial SL (2 , Z ) bundle L D • connection A = d τ 1 τ = τ 1 + iτ 2 2 τ 2 • as holomorphic bundle: L D = K − 1 B n − 1 | C [Bianchi,Collinucci,Martucci’11] [Greene,Shapire,Vafa,Yau’89] F–Theory 2017, Trieste – p.6

  7. Duality Twist • G ⊃ SO (1 , 3) L × SU (4) R × U (1) D • Supercharges: Q αI : ( 2 , 1 , 4 ) 1 � Q I α : ( 1 , 2 , 4 ) − 1 ˙ = ⇒ Topological duality twist required due to τ variation [Martucci’14] Ex: C ⊂ B 2 [Haghighat,Murthy,Vafa,Vandoren’15][Lawrie,S-Nameki,TW’16] G total SO (4) T × SO (1 , 1) L × U ( 1 ) R × U ( 1 ) C × U ( 1 ) D → ( 2 , 1 , 4 ) 1 ( 2 , 1 ) 1; − 1 , 1 , 1 ⊕ ( 2 , 1 ) − 1; − 1 , − 1 , 1 ⊕ ( 1 , 2 ) 1; 1 , 1 , 1 ⊕ ( 1 , 2 ) − 1; 1 , − 1 , 1 → = 1 = 1 T twist T twist 2 ( T C + T R ) , 2 ( T D + T R ) C D SO (4) T × SO (1 , 1) L × U ( 1 ) twist × U ( 1 ) twist G total → C D ( 2 , 1 , 4 ) 1 ( 2 , 1 ) 1; 0 , 0 ⊕ ( 2 , 1 ) − 1; − 1 , 0 ⊕ ( 1 , 2 ) 1; 1 , 1 ⊕ ✭✭✭✭ ( 1 , 2 ) − 1; 0 , 1 ✭ → ( 2 , 1 ) 1; 0 , 0 ⊕ ( 2 , 1 ) − 1; 1 , 0 ⊕ ( 1 , 2 ) 1; − 1 , − 1 ⊕ ✭✭✭✭✭ ✭ ( 1 , 2 , 4 ) − 1 → ( 1 , 2 ) − 1; 0 , − 1 . (4,4) broken to (0,4) by topological duality twist: chiral theory F–Theory 2017, Trieste – p.7

  8. F-theory Duality Twists Applicable to all types of D3-brane strings in F-theory [Lawrie,S-Nameki,TW’16] Spacetime dim d 8 6 4 2 CY n 2 3 4 5 2d supersymmetry (0 , 8) (0 , 4) (0 , 2) (0 , 2) CY 2 SU (4) R → SO (6) T CY 3 SU (4) R → SO (4) T × U (1) R CY 4 SU (4) R → SO (2) T × SU (2) R × U (1) R CY 5 SU (4) R → SU (3) R × U (1) R • F-theory on K3 is an outlier: direct twist of U (1) C with U (1) D F–Theory 2017, Trieste – p.8

  9. Twisted Bulk Spectrum • G total = SO (1 , 3) L × SU (4) R × U ( 1 ) D � • A µ : ( 2 , 2 , 1 ) ∗ Ψ I φ i : ( 1 , 1 , 6 ) 0 α : ( 2 , 1 , 4 ) 1 Ψ ˙ αI : ( 1 , 2 , 4 ) − 1 α , � Strategy for φ i , Ψ I Ψ ˙ αI ( U (1) D eigenstates!): • Decompose SU (4) R → SO ( m ) T × SU ( k ) R × U (1) R • Determine representation under SU ( k ) R and U (1) twist , U (1) twist C D • Deduce transformation of internal component as bundle valued form • Determine e.o.m/BPS equations and obtain zero mode counting Example: C ⊂ CY 4 with (0 , 2) SUSY SU (2) R × U (1) twist × U (1) twist ( q twist , q twist ) = ( − 1 , 0) : section of K C C D C D φ i : 1 0 , 0 ⊕ 1 0 , 0 ⊕ 2 1 2 ⊕ 2 − 1 ( q twist , q twist 2 , 1 2 , − 1 ) = (0 , − 1) : section of L D 2 C D 2 section of N C/B 3 : h 0 ( C, N C/B 3 ) zero modes = ⇒ 2 1 2 , 1 since K C = L − 1 in agreement with ( q twist , q twist − 1 2 , − 1 D ⊗ ∧ 2 N C/B 3 � � ) = C D 2 F–Theory 2017, Trieste – p.9

  10. Twisted Bulk Spectrum 4d N = 4 gauge field A µ is not a U (1) D eigenstate • Wilson line degree of freedom a (complex scalar): √ τ 2 a is U (1) D eigenstate: √ τ 2 δa = − 2 i ǫ − ˜ ψ + ���� q tw D = − 1 • external gauge field v + and v − no U (1) D eigenstates: √ τ 2 δv − = 2 i ( λ − ˜ λ, ˜ ˜ ǫ − + ǫ − ) λ : gauginos λ − ���� ���� q tw q tw D =1 D = − 1 Counting proceeds via gauginos λ − , ˜ λ − F–Theory 2017, Trieste – p.10

  11. Strings in 6d from CY3 [Lawrie,Sch¨ afer-Nameki,TW’16] ( q twist , q twist ) Fermions Bosons (0 , 4) Multiplicity C D h 0 ( C, K C ⊗ L D ) (1 , 1) ( 2 , 1 ) 1 ψ + ( 1 , 1 ) 0 , ( 1 , 1 ) 0 a, ¯ ¯ σ Hyper ˜ ( − 1 , − 1) ( 2 , 1 ) 1 ψ + ( 1 , 1 ) 0 , ( 1 , 1 ) 0 a, σ = g − 1 + c 1 ( B 2 ) · C ( 1 , 2 ) 1 µ + Twisted h 0 ( C ) = 1 (0 , 0) ( 2 , 2 ) 0 ϕ ( 1 , 2 ) 1 µ + ˜ Hyper (1 , 0) ( 1 , 2 ) − 1 ρ − ˜ h 1 ( C ) = g Fermi ( − 1 , 0) ( 1 , 2 ) − 1 ρ − (0 , 1) ( 2 , 1 ) − 1 λ − ( 1 , 1 ) 2 v + h 1 ( C, K C ⊗ L D ) = 0 Vector ˜ (0 , − 1) ( 2 , 1 ) − 1 λ − ( 1 , 1 ) − 2 v − In agreement with previous analysis in [Haghighat,Murthy,Vafa,Vandoren’15] Lots of recent work on 6d instanton strings: including [del Zotto,Lockhart’16] and refs therein F–Theory 2017, Trieste – p.11

  12. 2d (0,2) from D3 on CY5 [Lawrie,Sch¨ afer-Nameki,TW’16] Fermions Bosons (0,2) Multiplet Zero-mode Cohomology µ + ϕ Chiral h 0 ( C, N C/B 4 ) µ + ˜ ϕ ¯ Conjugate Chiral ˜ ψ + a Chiral h 0 ( C, K C ⊗ L D ) = g − 1 + c 1 ( B 4 ) · C ψ + ¯ a Conjugate Chiral ρ − — Fermi h 1 ( C, N C/B 4 ) = h 0 ( C, N C/B 4 ) + g − 1 − c 1 ( B 4 ) · C ρ − ˜ — Conjugate Fermi λ − v + h 1 ( C, K C ⊗ L D ) = 0 Vector ˜ λ − v − F–Theory 2017, Trieste – p.12

  13. U(1) Quantum Higgsing # massless vector multiplets: h 0 ( C, L − 1 L D = K − 1 D ) B | C 1. C ∩ ∆ = 0 ← → fibration over C is trivial h 0 ( C, L − 1 D ) = h 0 ( C, O ) = 1 → U (1) gauge group 2. C ∩ ∆ � = 0 ↔ fibration over C non-trivial h 0 ( C, L − 1 D ) = 0 since L − 1 D is negative → U (1) broken orientifold Type IIB: D3 on curve C + ← − − − − − → D3’ on curve C − action σ • if C + � = C − : U (1) gauge group - irresp. of 7-brane intersection! • if C + = C − : U (1) broken Suggests: • In F-theory: Quantum higgsing of U (1) due to strong coupling effects • Claim: These are localised along the O7-plane and of same origin responsible for non-pert. splitting of O7-plane F–Theory 2017, Trieste – p.13

  14. U(1) Quantum Higgsing Sen limit: • ∆ ≃ ǫ 2 h 2 ( η 2 − hχ ) + O ( ǫ 3 ) ǫ → 0 : O7-plane at h = 0 � �� � D7 − branes • IIB double cover CY X n − 1 : ξ 2 = h σ : ξ → − ξ Consider family of curves C δ for D3-brane (e.g. n=3) • on base B 2 : C δ : h = p 2 1 + δ p 2 ⊂ B 2 C δ : ξ 2 = p 2 • on double cover X 2 : ˜ 1 + δ p 2 ⊂ X 2 Consider limit δ → 0 (in Sen limit ǫ → 0) : • On X 2 : ˜ C 0 = C + ∪ C − C ± : ξ = ± p 1 at intersection C + ∩ C − (on top of O-plane): 3-3’ modes q U (1) = 2 = unHiggsing of U(1) • On B 2 : merely affects intersection points with O7-plane: { h = 0 } ∩ { p 1 = ±√ δ p 2 } { h = 0 } ∩ C δ : F–Theory 2017, Trieste – p.14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend