two higgs doublets from fourth generation condensation
play

Two Higgs Doublets from Fourth Generation Condensation Gustavo - PowerPoint PPT Presentation

Two Higgs Doublets from Fourth Generation Condensation Gustavo Burdman University of S ao Paulo With Carlos Haluch, , arxiv:1109.xxxx Outline Introduction and Motivation Is a Fourth Generation still allowed ? What is it good for ? Two


  1. Two Higgs Doublets from Fourth Generation Condensation Gustavo Burdman University of S˜ ao Paulo With Carlos Haluch, , arxiv:1109.xxxx

  2. Outline Introduction and Motivation Is a Fourth Generation still allowed ? What is it good for ? Two Higgs Doublet Model from Fermion Condensation Effective Theory Scalar Spectrum Phenomenology Conclusions

  3. Is a Fourth Generation Still Viable ? Higgs must either be: SM ATLAS Preliminary CLs Limits σ / σ th 4 Generation Model ◮ Light Observed 95% CL Limit on ∫ 10 Expected -1 Ldt = 1.0-2.3 fb m h < 120 GeV ± σ 1 s = 7 TeV ± σ 2 ◮ Heavy 1 m h > 600 GeV -1 10 -2 10 200 300 400 500 600 m [GeV] H Heavy quarks must be m t ′ > 450 GeV, m b ′ > 400 GeV

  4. Possible Ways Out ◮ Dynamical explanation for m h > 600 GeV ◮ Fermion Condensation with low cutoff → Heavy Higgs/No Higgs ◮ One Higgs doublet always m h > 700 GeV ◮ More complicated scalar sector ◮ Fermion condensation → Two-Higgs doublets at low energy ◮ (Mostly) heavy scalar spectrum with different σ × BR

  5. Why a Fourth Generation ? Heavy Chiral Fermions: strongly coupled to EWSB sector ◮ Top quark: m t ≃ v ⇒ y t ∼ 1 ◮ If Heavy Fourth Generation ⇒ y 4 > 1 Higgs sector is strongly coupled ◮ Natural to assume composite Higgs sector

  6. Why a Fourth Generation ? Other motivation: ( Holdom, Hou, Hurth, Mangano, Sultanasoy, Unel ’09 ) ◮ New CP violation source for baryon asymmetry ◮ New sources of CPV in meson decays ◮ · · ·

  7. Electroweak Symmetry Breaking Composite EWSB Sector: ◮ Technicolor: Asymptotically free, unbroken gauge interaction ⇒ � ¯ F L F R � � = 0 ⇒ EWSB F ’s are confined fermions, just as quarks in QCD. ◮ Alternative: gauge interaction spontaneously broken at Λ ∼ 1 TeV ⇒ F ’s un-confined heavy fermions with EW quantum #’s ( E.g. Bardeen,Hill, Lindner ’90, Hill ’91 )

  8. EWSB from Fourth Generation Condensation Ingredients: ◮ A Chiral Fourth Generation: Q 4 , U 4 R , D 4 R , L 4 , E 4 R , N 4 R ◮ New strong interaction at the O (1) TeV scale: ◮ E.g. Broken gauge symmetry M ∼ TeV ◮ Strongly coupled to 4th gen. ⇒ � ¯ F 4 F 4 � � = 0 ⇒ m 4 ≃ (500 − 600) GeV ◮ Other fermion masses: higher dimensional operators like x ij Λ 2 ¯ L f j R ¯ f i U R U L

  9. Models of Fourth Generation Condensation All ingredients present in AdS 5 ( GB, Da Rold ’07, GB, Da Rold, Matheus ’09 ) Extra dimensional theories in compact AdS 5 dual to strongly coupled theories in 4D: ◮ Naturally results in strongly coupled heavy fermions ◮ Higher-dimensional operators among light fermions suppressed by large UV scale Λ ◮ Build gauge theory in AdS 5 with one extra chiral generation and no Higgs . ◮ Minimal model: Only up-type 4G quark condenses > 700 GeV ⇒ Only 1 Higgs doublet, m h ∼

  10. Models of Fourth Generation Condensation ◮ More general and more natural: both up and down type quarks condense ◮ More natural: interaction must be nearly isospin invariant to avoid T parameter constraints ◮ More general: would need to fine tune interaction to avoid one condensation ◮ ⇒ Two Higgs doublets at low energy

  11. A Two Higgs Doublet from Fermion Condensation ( Luty ’90, Luty, Hill, Paschos ’90, GB, Haluch ’11 ) New fermions � U i � Q i = U i , D i , D i L with i gauge index of new interaction. New Strong Interaction: ◮ Want un-confined fermions ⇒ spontaneosly broken at scale M ◮ Massive bosons strongly coupled to Q i , U i and D i ◮ E.g. If G a color-octect ⇒ i = (1 − 3) is color index, Q i , U i and D i can be fourth-generation quarks

  12. Electroweak Symmetry Breaking New strong interactions ⇒ four-fermion operators L 4f = g L g u UQ + g L g d QU ¯ ¯ QD ¯ ¯ DQ M 2 M 2 G G with g L , g u , g d gauge couplings. If 8 π 2 ⇒ � ¯ g L g u > QU � � = 0 N c 8 π 2 ⇒ � ¯ g L g d > QD � � = 0 N c One doublet condensing ⇒ SU (2) L × U (1) Y → U (1) EM

  13. EWSB and Low Energy Scalar Spectrum Four-fermion interactions ← → Yukawa interactions Y U ( ¯ Q ˜ Φ U U + h . c . ) + Y D ( ¯ L eff . = Q Φ D D + h . c . ) G Φ † G Φ † − M 2 U Φ U − M 2 D Φ D with ˜ Y 2 Y 2 Φ U = − i σ 2 Φ ∗ U = g L g u , D = g L g d , U with hypercharges h U = − 1 / 2, h d = 1 / 2.

  14. EWSB and Low Energy Scalar Spectrum At µ < M G : ◮ Scalars develop kinetic terms L kin . = Z Φ U ( µ )( D µ Φ U ) † D µ Φ U + Z Φ D ( µ )( D µ Φ D ) † D µ Φ D with the compositness BCs Z Φ U ( M G ) , Z Φ D ( M G ) = 0. ◮ They get VEVs if four-fermion couplings super-critical: � QU � � = 0 ↔ � Φ U � � = 0 � QD � � = 0 ↔ � Φ D � � = 0 ◮ Effective Two-Higgs doublet spectrum at low energy

  15. Low Energy Scalar Spectrum At µ < M G all couplings get renormalized and some generated. E.g. : Y U Y D Y U → , Y D → � � Z Φ U Z Φ D G − g L g u N g µ 2 M 2 M 2 G − µ 2 � � = U 8 π 2 G − g L g d N g µ 2 M 2 M 2 G − µ 2 � � = D 8 π 2 We ca see that m 2 U < 0 and m 2 D < 0 for super-critical couplings ⇒ V (Φ U , Φ D ) with � Φ U � = v U , � Φ D � = v D

  16. Φ U − Φ D Mixing and Peccei-Quinn Symmetry Theory is invariant under Q → e − i θ Q U → e i θ U D → e i θ D Φ U → e 2 i θ Φ U Φ D → e − 2 i θ Φ D , UD (Φ † forbids mixing term µ 2 U Φ D + h . c . ) in V (Φ U , Φ D ). This results in M A = 0

  17. Instantons Induce M A Fermionic equivalent of mixing term U c ˜ L mix = G UD ( ¯ QD ¯ ( ˜ Q + h . c . ) , Q = − i σ 2 Q ) But this is generated by ’t Hooft fermion determinant ( Hill ’95 ) � ¯ k � L inst . = det Q L Q R M 2 G with k ∼ O (1). ⇒ Instantons of new strong interactions responsible for M A

  18. Scalar Spectrum Scalar potential generated by fermion loops U | Φ U | 2 + µ 2 D | Φ D | 2 + µ 2 µ 2 UD (Φ U † Φ D + h . c . ) V (Φ U , Φ D ) = + λ 1 2 | Φ U | 4 + λ 2 2 | Φ D | 4 + λ 3 | Φ U | 2 | Φ D | 2 + λ 4 | Φ U † Φ D | 2 Couplings Y U , Y D , λ i , µ U , µ D , µ UD run down by using RGEs ⇒ scalar spectrum

  19. Running to Low Energies Solutions for λ 1 ( µ ) for M G = 2 , 3 , 4 TeV 25 20 15 Λ � Μ � 10 5 0 0.0 0.5 1.0 1.5 Μ � TeV �

  20. Scalar Spectrum √ � Im [Φ 0 D ] cos β − Im [Φ 0 � = 2 U ] sin β A √ � − Re [Φ 0 U ] sin γ + Re [Φ 0 � = 2 D ] cos γ h √ � Re [Φ 0 U ] cos γ + Re [Φ 0 � = 2 D ] sin γ H Φ ± D cos β − Φ ± H ± = U sin β tan β = v U / v D ≃ 1. The CP-even mixing is UD + ( λ 3 + λ 4 ) v 2 sin 2 β/ 2 tan 2 γ = µ 2 UD + λ 4 v 2 cos 2 β/ 2 µ 2

  21. Scalar Masses E.g.: Pseudo-scalar mass λ 1 λ 2 cos 2 β sin 2 β UD = k v 2 µ 2 1 − kv 2 ( λ 1 cos 2 β cot β + λ 2 sin 2 β tan β ) / (2 M 2 2 M 2 � � G ) G and the pseudo-scalar mass is A = − 2 µ 2 M 2 UD sin 2 β

  22. Scalar Masses For k = (0 . 1 − 1) M G = 2 TeV M G = 3 TeV M G = 4 TeV M A (26-118) GeV (15-59) GeV (10-39) GeV M h (548-580) GeV (459-467) GeV (422-425) GeV M H (651-732) GeV (530-537) GeV (482-585) GeV M H ± (603-719) GeV (495-512) GeV (453-459) GeV ◮ Heavy ( h , H , H ± ) ≃ (400 − 700) GeV depending on ( k , M G ) ◮ Light A ≃ (10 − 120) GeV

  23. Phenomenology ◮ Usual h , H decay channels suppressed in favor of AA , A , Z ◮ If condensing fermions carry color (4G quarks) → σ prod . ( gg → ( h , H , A )) ≃ (6 − 7) SM values ◮ If new fermion colorless, no enhancement of σ prod . . But scalar spectrum still same.

  24. Electroweak Precision Constraints Constraints in the S-T plot (68% and 95% C.L. contours Parameter space of scalar sector ( k , M G ) + fourth generation � � 2 to 4 TeV 0.4 0.3 0.2 0.1 T 0.0 � 0.1 � 0.2 � 0.2 � 0.1 0.0 0.1 0.2 0.3 0.4 S

  25. Flavor ◮ Dynamics at the high scale introduce higher dimensional operators such as x ij Λ 2 ¯ L f j R ¯ f i U R U L ◮ Can always accommodate Φ U only couples to up-type quarks, Φ D only to down-type quarks and charged leptons ◮ PQ symmetry softly broken ⇒ mixing does not induce FCNCs at tree level ◮ Loop effects: H ± too heavy to give important effects in b → s γ , etc.

  26. Summary/Outlook ◮ 4th Generation still not excluded by Higgs searches ◮ Composite 2HDM with light A and heavy ( h , H , H ± ) is a natural consequence of fermion condensation ◮ If new fermions carry color: ◮ We will see them soon ( m t ′ > 450 GeV) ◮ σ ( h , H , A ) larger than in standard 2HDM ◮ But preferred decay channels are ( h , H ) → ( A , A ) , ( A , Z ) ◮ If new fermions colorless, unusual scalar spectrum still hint of fermion condensation

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend