calorimetry of symmetry breaking in a photon bose
play

Calorimetry of & symmetry breaking in a photon Bose-Einstein - PowerPoint PPT Presentation

Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate Frank Vewinger Universitt Bonn What are we dealing with? System: 10 4 10 5 Photons ultracold : 300K Box: Curved mirror cavity A few m long 2 1)


  1. Calorimetry of & symmetry breaking in a photon Bose-Einstein condensate Frank Vewinger Universität Bonn

  2. What are we dealing with? System: 10 4 – 10 5 Photons „ ultracold “: 300K Box: Curved mirror cavity A few µm long 2

  3. 1) Photon BEC: HowTo 1) Photon BEC: HowTo 2) Thermodynamic Properties of Photons 2) Thermodynamic Properties of Photons 3) Fluctuations & Symmetry Breaking 3) Fluctuations & Symmetry Breaking Work done with Julian Schmitt Tobias Damm Jan Klaers (now@ETH Zürich) Martin Weitz 3

  4. 1) Photon BEC: HowTo 2) Thermodynamic Properties of Photons 3) Fluctuations & Symmetry Breaking 4

  5. dye photon box The box: Dispersion 2 𝐹 = ℏ𝑑 2 ≈ ℏ𝑑 𝑙 𝑨 + 𝑙 𝑠 2 + 𝑙 𝑠 𝑙 𝑨 2 𝑜 𝑜 2 𝑙 𝑨 = 𝜌ℏ𝑑𝑟 𝜌ℏ𝑑𝑟 2 𝑠 2 + ℏ𝑑 𝐸 0 7 ᐧ λ 0 /2 2 + 2𝜌𝑟𝑜 𝑙 𝑠 𝑜 𝐸 0 𝑜 𝑆 𝐸 0 2 + 1 2 𝑛 0 Ω 2 𝑠 2 + 𝑙 𝑠 = 𝑛 0 𝑑 2 2𝑛 0 ⇒ Photons in the microcavity behave as - Massive particles - Two-dimensional - Harmonically trapped 5 Klaers, Vewinger & Weitz, Nature Physics 6 , 512 (2010)

  6. dye photon box The box: Dispersion Dye 2 𝐹 = ℏ𝑑 2 ≈ ℏ𝑑 𝑙 𝑨 + 𝑙 𝑠 2 + 𝑙 𝑠 𝑙 𝑨 2 𝑜 𝑜 2 𝑙 𝑨 = 𝜌ℏ𝑑𝑟 𝜌ℏ𝑑𝑟 2 𝑠 2 + ℏ𝑑 𝐸 0 2 + 2𝜌𝑟𝑜 𝑙 𝑠 𝑜 𝐸 0 𝑜 𝑆 𝐸 0 2 + 1 2 𝑛 0 Ω 2 𝑠 2 + 𝑙 𝑠 = 𝑛 0 𝑑 2 2𝑛 0 ⇒ Photons in the microcavity behave as - Massive particles - Two-dimensional - Harmonically trapped ℏ𝜕 𝑎𝑄𝑀 ≫ 𝑙 𝐶 𝑈 6 Klaers, Vewinger & Weitz, Nature Physics 6 , 512 (2010)

  7. dye photon box Dye 𝛽(𝜑) 𝑔(𝜑) Intensity [a.u.] TEM 6𝑛𝑜 TEM 7𝑛𝑜 TEM 8𝑛𝑜 600 400 500 ν [THz] Dye reservoir: - Thermalizes gas - Sets chemical potential 𝜈 𝛿 ℏ (𝜕 𝐷 −Δ) 𝑙 𝐶 𝑈 = 𝑥 ↓ 𝑁 ↑ ℏ𝜕 𝑎𝑄𝑀 ≫ 𝑙 𝐶 𝑈 𝑙 𝐶 𝑈 𝑓 𝑓 𝑥 ↑ 𝑁 ↓ 7 Klaers, Vewinger & Weitz, Nature Physics 6 , 512 (2010)

  8. dye photon box Dye 𝛽(𝜑) 𝑔(𝜑) Intensity [a.u.] TEM 6𝑛𝑜 TEM 7𝑛𝑜 TEM 8𝑛𝑜 600 400 500 ν [THz] Dye reservoir: - Thermalizes gas - Sets chemical potential 𝜈 𝛿 ℏ (𝜕 𝐷 −Δ) 𝑙 𝐶 𝑈 = 𝑥 ↓ 𝑁 ↑ 𝑙 𝐶 𝑈 𝑓 𝑓 𝑥 ↑ 𝑁 ↓ 8 Klaers, Vewinger & Weitz, Nature Physics 6 , 512 (2010)

  9. Scales Energy scales Dye   Trap frequency  150 µeV  Thermal energy k B T 25 meV  cutoff   Cavity cutoff 2 . 1 eV  Photon mass ≈ 10 −7 𝑛 𝑓  Critical particle number N  2  2 N   k T c   B   N c 80 . 000 @ 300 K     3  Critical phase space density n c  2 1 . 3 / µm 9 Klaers, Schmitt, Vewinger & Weitz, Nature 468 , 545 (2010) See also Marelic & Nyman, PRA 91 , 033826 (2015)

  10. Scales Energy scales Dye   Trap frequency  150 µeV  Thermal energy k B T 25 meV  cutoff   Cavity cutoff 2 . 1 eV  Photon mass ≈ 10 −7 𝑛 𝑓  Critical particle number N  2  2 N   k T c   B   N c 80 . 000 @ 300 K     3  Critical phase space density n c  2 1 . 3 / µm 10 Klaers, Schmitt, Vewinger & Weitz, Nature 468 , 545 (2010) See also Marelic & Nyman, PRA 91 , 033826 (2015)

  11. Scales Energy scales Dye   Trap frequency  150 µeV  Thermal energy k B T 25 meV  cutoff   Cavity cutoff 2 . 1 eV  Photon mass ≈ 10 −7 𝑛 𝑓  Critical particle number N  2  2 N   k T c   B   N c 80 . 000 @ 300 K     3  Critical phase space density n c  2 Brute force theory: 1 . 3 / µm Appl Phys B 105, 17 – 33 (2011) Microscopic models: de Leeuw, PRA 88, 033829 (2013). Kirton/Keeling, PRL 111,100404 (2013) 11 Kopylov et al., PRA 92, 063832 (2015) Klaers, Schmitt, Vewinger & Weitz, Nature 468 , 545 (2010) See also Marelic & Nyman, PRA 91 , 033826 (2015)

  12. Experimental setup 12

  13. Experimental setup 13

  14. Experimental setup 14

  15. Properties? 15

  16. Properties? 16

  17. 1) Photon BEC: HowTo 2) Thermodynamic Properties of Photons 3) Fluctuations & Symmetry Breaking 17

  18. Condensate Fraction 1000 1.0 2 𝑈 Condensate fraction n 0 /n 1 − 𝑈 𝐷 0.8 𝑙 B 𝑈 100 Signal (a.u.) 0.6 10 0.4 1 0.2 0 0.1 1.5 0.5 1.0 560 570 580 0 Wavelength λ (nm) Temperature T/T c Bose-Einstein distribution 𝑈 𝑈 𝑑 = 𝑂 c 𝑂 ≈ 80.000 18 Damm , Schmitt,… Nature Comm. 7,11340 (2016)

  19. Internal Energy 5 4 c Energy (U- ℏ ω c ) / Nk B T classical limit 3 (Maxwell-Boltzmann) criticality 2 1 0 0 0.5 1.0 1.5 2.0 2.5 Temperature T/T 19 c

  20. Internal Energy Atomic 5 Phys. Rev. Lett. 77, 4984-4987 (1996) systems 4 c Energy (U- ℏ ω c ) / Nk B T 3 2 Phys. Rev. A 90, 043640 (2014) 1 0 2.5 0 0.5 1.0 1.5 2.0 Temperature T/T 20 c

  21. Specific Heat 5 cusp singularity at criticality 4 Specific heat C / Nk B 3 2 2 k B in 2D (equipartition theorem) 1 0 0 0.5 1.0 1.5 2.0 2.5 Temperature T/T 21 c Klünder & Pelster, EPJB 68, 457 (2009): C=4.38 k B T, TD limit

  22. Specific Heat 5 Liquid 4 He Phys. Rev. B 68, 174518 (2003) 4 Specific heat C / Nk B 3 2 Science 335 , 563-567 (2012) Fermions ( 6 Li) 1 0 0 0.5 1.0 1.5 2.0 2.5 Temperature T/T 22 c Klünder & Pelster, EPJB 68, 457 (2009): C=4.38 k B T, TD limit

  23. Entropy per Particle 5 𝑈 𝑈′ 𝑒𝑈 ′ 𝑇 𝑈 = 𝐷 𝑈′ 4 0 Entropy S / N 3 2 𝑇/𝑂 → 0 (third law of thermodynamics) 1 0 0 0.5 1.0 1.5 2.0 2.5 Temperature T/T 23 c

  24. Entropy per Particle 5 𝑈 𝑈′ 𝑒𝑈 ′ 𝑇 𝑈 = 𝐷 𝑈′ 4 0 Entropy S / N 3 2 𝑇/𝑂 → 0 (third law of thermodynamics) 1 0 0 0.5 1.0 1.5 2.0 2.5 Temperature T/T 24 c

  25. 1) Photon BEC: HowTo 2) Thermodynamic Properties of Photons 3) Fluctuations & Symmetry Breaking 25

  26. Coherence of a Bose-Einstein condensate P. W. Anderson (1986): "Do two superfluids which have never 'seen' one another possess a relative phase?" Spontaneous symmetry breaking F Damping of density fluctuations Phase selection: long-range order 2 T > T c g (2) ( 𝜐 ) P n 1 2 T < T c g (2) ( 𝜐 ) P n 1 Andrews et al., Science 275 (1997) n 𝜐 Öttl et al., PRL 95 (2005) 26 14

  27. Coherence of a Bose-Einstein condensate P. W. Anderson (1986): "Do two superfluids which have never 'seen' one another possess a relative phase?" Spontaneous symmetry breaking Closed vs. open system F Isolation Reservoir ∆ n ,∆ E ≃ 0 ∆ n ,∆ E ≠ 0 Damping of density fluctuations Phase selection: long-range order 2 T > T c g (2) ( 𝜐 ) P n 1 2 T < T c g (2) ( 𝜐 ) P n 1 Andrews et al., Science 275 (1997) n 𝜐 Öttl et al., PRL 95 (2005) → BEC correlations in open environments? 27 14

  28. Heat bath and particle reservoir for light Heat bath Molecules Photon M = 10 8 – 10 12 condensate , Δ𝐹, Δ𝑜 𝑜 𝑈, 𝜈 Grand canonical ensemble, Ω 𝑈, 𝑊, 𝜈 if 𝑁 ≫ 𝑜 Photon number distribution P n Master equation Statistics crossover 28 Klaers et al., PRL 108 (2012) Sob’yanin , PRE 85 (2012) 1 5

  29. Limiting cases for BEC number statistics Canonical ensemble ( 𝑁 < 𝑜 2 ) Grand-canonical ensemble ( 𝑁 ≫ 𝑜 2 ) Poisson statistics ("quiet" BEC) Bose-Einstein statistics ("flickering" BEC) n =10 3 , M =10 7 n =10 3 , M =10 4 ɸ (t) ɸ (t) n(t) n(t) quasi-spin Time, Time, 2 2 𝑕 (2) (𝜐) Autocorrelation 𝑕 (2) (𝜐) 𝑕 2 0 = 2 𝜐 c(2) 𝑕 2 0 = 1 ≙ 1 1 Fluctuation level 𝜐 Delay, 𝜐 29 1 6

  30. Experiment: intensity correlations of BEC Condensate fraction: Photon statistics Time evolution (PMT) 4% 1 16% 2 Probability, P n 3 28% 4 Reservoir (fixed size) 58% Time, t (ns) BEC photons Schmitt et al., Phys. Rev. Lett. 112 , 030401 (2014) see also: Physics 7 (2014) 30 1 7

  31. Experiment: intensity correlations of BEC Condensate fraction: Photon statistics Time evolution (PMT) 4% 1 16% 2 Probability, P n 3 28% 4 Reservoir (fixed size) 58% Time, t (ns) BEC photons Crossover from Autocorrelation, g (2) ( 𝜐 ) Bose-Einstein 𝜐 c(2) ≃ 1.4 ns ( ) to Poisson statistics ( ) 0 2 4 6 8 Schmitt et al., Phys. Rev. Lett. 112 , 030401 (2014) Delay, 𝜐 (ns) see also: Physics 7 (2014) 31 1 7

  32. Temporal phase evolution Response of condensate phase to statistical fluctuations? 32 1 8

  33. Temporal phase evolution Response of condensate phase to statistical fluctuations? Canonical ensemble ( , second-order coherence) I ( t ) regular beating without phase jumps ⤷ Schmitt et al., Phys. Rev. Lett. 116 , 033604 (2016) 33 1 8

  34. Temporal phase evolution Response of condensate phase to statistical fluctuations? Phase jumps Canonical ensemble ( , second-order coherence) Grand-canonical ensemble ( , intensity fluctuations) I ( t ) I ( t ) ( 𝚫 PJ-1 = 20ns) regular beating without phase jumps ⤷ Schmitt et al., Phys. Rev. Lett. 116 , 033604 (2016) 34 1 8

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend