two body meson exchange currents and gamow teller
play

Two body (meson exchange) currents and Gamow-Teller quenching - PowerPoint PPT Presentation

Two body (meson exchange) currents and Gamow-Teller quenching Javier Menndez JSPS Fellow, The University of Tokyo International Symposium on "High-Resolution Spectroscopy and Tensor Interactions" Osaka, 17 th November 2015 Weak


  1. Two body (meson exchange) currents and Gamow-Teller quenching Javier Menéndez JSPS Fellow, The University of Tokyo International Symposium on "High-Resolution Spectroscopy and Tensor Interactions" Osaka, 17 th November 2015

  2. Weak transitions in nuclei β and ββ decay processes, Weak interaction L W = G F � � j L µ J µ † √ + H . c . L 2 j L µ leptonic current: electron, neutrino J µ † hadronic current: quarks → nucleons L In nuclei (non-relativistic), β decay is � g V τ − + g A σ i τ − � F | i | I � i i Fermi and Gamow-Teller transitions corrections (forbidden transitions) expansion of the leptonic current 2 / 20

  3. Matrix elements Nuclear matrix elements for weak transitions � dx j µ ( x ) J µ ( x ) | Initial � � Final |L leptons − nucleons | Initial � = � Final | • Nuclear structure calculation of the initial and final states: Ab initio, shell model, energy density functional... • Lepton-nucleus interaction: Evaluate (non-perturbative) hadronic currents inside nucleus: phenomenology, effective theory 3 / 20

  4. Gamow-Teller transitions Single- β , Gamow-Teller (GT) transitions well described by theory... 1.0 ν 0.77 0.8 W 0.744 e T(GT) Exp. n p 0.6 0.4 � g eff A σ i τ − g eff � F | i | I � , A ≈ 0 . 7 g A 0.2 i 0.0 ...but need to “quench“ GT operator 0.0 0.2 0.4 0.6 0.8 1.0 T(GT) Th. ����� � ���� ����� � ���� ������� ��� ������� ��� ���������� ��� ���������� ���������� ��� ���������� ��� Martinez-Pinedo et al. PRC 53 2602 (1996) ��� ��� Iwata et al. ��� ����� ����� JPSCP 6 03057 (2015) ��� ��� � � �� �� �� �� �� � � �� �� �� �� �� 4 / 20

  5. Double–Gamow-Teller transitions 2 νββ decays also well described with "quenched" GT operator 0 + � 1 + 1 + � 0 + � � n σ n τ − � � � � m σ m τ − � � � � � � β = n m M 2 νβ � f k k i E k − ( M i + M f ) / 2 k Table 2 The ISM predictions for the matrix element of several 2 ν double beta decays (in MeV − 1 ). See text for the definitions of the valence spaces and interactions. M 2 ν ( exp ) M 2 ν ( th ) INT q 48 Ca → 48 Ti 0 . 047 ± 0 . 003 0.74 0.047 kb3 48 Ca → 48 Ti 0 . 047 ± 0 . 003 0.74 0.048 kb3g 48 Ca → 48 Ti 0 . 047 ± 0 . 003 0.74 0.065 gxpf1 76 Ge → 76 Se 0 . 140 ± 0 . 005 0.60 0.116 gcn28:50 76 Ge → 76 Se 0 . 140 ± 0 . 005 0.60 0.120 jun45 82 Se → 82 Kr 0 . 098 ± 0 . 004 0.60 0.126 gcn28:50 82 Se → 82 Kr 0 . 098 ± 0 . 004 0.60 0.124 jun45 128 Te → 128 Xe 0 . 049 ± 0 . 006 0.57 0.059 gcn50:82 130 Te → 130 Xe 0 . 034 ± 0 . 003 0.57 0.043 gcn50:82 Caurier, Nowacki, Poves PLB 711 62 (2012) 136 Xe → 136 Ba 0 . 019 ± 0 . 002 0.45 0.025 gcn50:82 This puzzle has been the target of many theoretical efforts: Arima, Rho, Towner, Bertsch and Hamamoto, Wildenthal and Brown... Anything missing in the transition operator or in many-body approach? 5 / 20

  6. Shell model nuclear structure Shell model in one-major-shell spaces, phenomenological interactions pf-shell, KB3G, GXPF1A // sd-pf space SDPFMU interaction: 48 Ca p 3 / 2 , p 1 / 2 , f 5 / 2 , g 9 / 2 space, GCN2850 int.: 76 Ge, 82 Se d 5 / 2 , s 1 / 2 , d 3 / 2 , g 7 / 2 , h 11 / 2 space, GCN5082 int.: 124 Sn, 130 Te, 136 Xe Experimental excitation spectra and occupancies well reproduced Neutron Vacancies Proton Occupancies + ) + (4 ISM(GCN) 2500 2 5 ISM(RG) + + 2 + 5 + 2 2 + + 6 EXP 4 Excitation energy (keV) + + ,4 + 6 3 + 3 ISM(GCN) 2000 8 ISM(GCN) ISM(RG) + + ISM(RG) 6 6 + 4 EXP + 4 EXP ISM(GCN) 1500 6 ISM(RG) + 2 + 2 0g 9/2 EXP 0g 9/2 1000 4 0f 5/2 500 2 0f 5/2 136 Xe 1p 1p + + 0 0 0 0 Exp Theory 76 Ge 76 Se 76 Ge 76 Se Exp: Schiffer et al. PRL100 112501(2009), Kay et al. PRC79 021301(2009) Th: JM, Caurier, Nowacki, Poves PRC80 048501 (2009) 6 / 20

  7. Chiral Effective Field Theory Chiral EFT: low energy approach to QCD, nuclear structure energies Approximate chiral symmetry: pion exchanges, contact interactions Systematic expansion: nuclear forces and electroweak currents 2N force 3N force 4N force N ν e LO N NLO N N e ν N N e ν π 2 N LO N N N N Park, Gazit, Klos, Baroni... N LO 3 Short-range couplings fitted to experiment once Weinberg, van Kolck, Kaplan, Savage, Epelbaum, Kaiser, Meißner... 7 / 20

  8. Oxygen dripline and 3N forces O isotopes: ’anomaly’ in the dripline at 24 O, doubly magic nucleus 4 Single-Particle Energy (MeV) (a) Forces derived from NN theory stability line d3/2 Z 0 Si 2007 Al 2007 -4 Mg � 2007 s 1/2 d5/2 Na 2002 Ne 2002 F 1999 -8 G-matrix 8 V O 1970 low k stable isotopes N 1985 8 14 16 20 C 1986 unstable isotopes Neutron Number ( N ) B 1984 unstable fluorine isotopes Be 1973 Single-Particle Energy (MeV) 4 (c) G-matrix NN + 3N ( ∆) forces Li 1966 unstable oxygen isotopes 2 He 1961 neutron halo nuclei H 1934 0 d3/2 N 2 8 20 28 -4 s 1/2 d5/2 Calculations based on chiral NN+3N forces -8 NN + 3N ( ∆) and MBPT correctly predict dripline at 24 O NN 8 14 16 20 Otsuka et al. PRL 105 032501 (2010) Neutron Number ( N ) 8 / 20

  9. Calcium isotopes with NN+3N forces Calculations with NN+3N forces predict shell closures at 52 Ca, 54 Ca 5 22 20 MBPT 18 CC 4 + Energy (MeV) 16 S 2n (MeV) 14 3 12 10 2 8 MBPT 6 CC 2 1 SCGF 4 MR-IM-SRG 2 0 0 28 29 30 31 32 33 34 35 36 42 44 48 46 50 52 54 56 Neutron Number N Mass Number A 51 , 52 , 53 , 54 Ca masses [TRIUMF/ISOLDE] 54 Ca 2 + 1 state excitation energy [RIBF] Hebeler et al. ARNPS 65 457 (2015) 9 / 20

  10. Two-body currents in light nuclei Two-body (meson-exchange) currents tested in light nuclei, electromagnetic and weak interactions studied: 4 3 H β decay 3 Gazit et al. PRL103 102502(2009) 9 B 7 Li p 9 Li 3 H 2 A ≤ 9 magnetic moments 8 Be EM transitions 1 8 Li 8 B µ ( µ N ) 2 H 6 Li Pastore et al. PRC87 035503(2013) = ⇒ 0 GFMC(IA) 9 C Pastore et al. PRC90 024321(2014) GFMC(TOT) 9 Be 7 Be EXPT -1 3 H µ capture 3 He n -2 Marcucci et al. PRC83 014002(2011) -3 √ 2b current contributions ∼ few % in light nuclei ( Q ∼ BEm ) 2b currents order Q 3 ⇒ larger effect in medium-mass nuclei ( Q ∼ k F ) 10 / 20

  11. Hadronic weak currents in chiral EFT At lowest orders Q 0 , Q 2 1b currents only N e ν J 0 i ( p ) = g V ( p 2 ) τ − , � g A ( p 2 ) σ − g P ( p 2 ) ( p · σ i ) p + i ( g M + g V ) σ i × p � τ − , J i ( p ) = 2 m 2 m N At order Q 3 chiral EFT N ν N e N N ν e 2b currents predicted Reflect interactions π between nucleons in nuclei Long-range currents dominate N N N N 12 = − g A 1 � � J 3 2 c 4 k × ( σ × × k ) τ 3 σ 1 τ 3 1 + σ 2 τ 3 × + 4 c 3 k · � � k 2 4 F 2 m 2 π + k 2 π 11 / 20

  12. 2b currents in medium-mass nuclei Approximate in medium-mass nuclei: normal-ordered 1b part with respect to spin/isospin symmetric Fermi gas Sum over one nucleon, direct and the exchange terms N N e ν N N ν e ⇒ J eff n , 2 b normal-ordered 1b current Corrections ∼ ( n valence / n core ) π in Fermi systems N N N N The normal-ordered two-body currents modify GT operator p 2 n , 2 b = − g A ρ � � 2 c 4 − c 3 � + 2 � J eff τ − I ( ρ, P ) 3 c 3 , n σ n f 2 m 2 π + p 2 3 π p independent p dependent 12 / 20

  13. 2b currents and GT quenching � � �� 2 c 4 − c 3 n , 2 b = − g A ρ 2b currents, p = 0: GT, 2 νββ decays J eff π τ − I ( ρ, P ) n σ n f 2 3 1.1 General density range 1bc ρ = 0 . 10 . . . 0 . 12 fm − 3 GT(g A +2b)/g A 0.9 Couplings c 3 , c 4 from NN potentials 2bc Entem et al. 0.7 PRC68 041001(2003) p=0 Epelbaum et al. NPA747 362(2005) Rentmeester et al. 0.5 0 0.04 0.08 0.12 PRC67 044001(2003) -3 ] ρ [fm δ c 3 = − δ c 4 ≈ 1 GeV − 1 JM, Gazit, Schwenk PRL107 062501 (2011) 2b currents predict σ τ quenching q = 0 . 85 ... 0 . 66 13 / 20

  14. 2b currents: Coupled-Cluster calculations Coupled-cluster calculations for single- β decay (GT strengths) including chiral 1b+2b currents in light 14 C, 22 O and 24 O 1 14 C, Λ χ = 500MeV 22 O, Λ χ = 500MeV 24 O, Λ χ = 500MeV Calculation with chiral EFT 2 = (S − − S + ) [3( N − Z )] 14 C, Λ χ = 450MeV NN+3N forces 22 O, Λ χ = 450MeV 24 O, Λ χ = 450MeV 1b+2b currents 14 C, Λ χ = 550MeV 24 O, Λ χ = 550MeV Normal-ordered 1b part 0.9 22 O, Λ χ = 550MeV with respect to Hartree-Fock state q From 2b currents predict small σ τ quenching q = 0 . 96 ... 0 . 92 0.8 -1 -0.5 0 0.5 1 c D Ekström et al. PRL113 262504 (2014) 14 / 20

  15. 2b currents: transferred-momentum dependence p 2 � � 2b currents depend on transferred momentum p : − g A ρ 2 π τ − n σ n 3 c 3 f 2 m 2 π + p 2 1.1 1 GT(1b+2b)/g A 1bc 0.9 2bc N ν N e 0.8 0.7 π 0.6 N N 0.5 0 100 200 300 400 p [MeV] JM, Gazit, Schwenk PRL107 062501 (2011) Quenching reduced at p > 0, relevant for 0 νββ decay where p ∼ m π and other weak processes e.g. muon capture 15 / 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend